SIMH Users’ Guide, V3.8-1
22-Sept-2008

COPYRIGHT NOTICE
The following copyright notice applies to the SIMH source, binary, and documentation:

Original code published in 1993-2008, written by Robert M Supnik
Copyright (c) 1993-2008, Robert M Supnik

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS I1S", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M SUPNIK BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Except as contained in this notice, the name of Robert M Supnik shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization from Robert M Supnik.

[a] (g Te [Ule] 1 [o] o IVETRUT TR URR PR 3

1 Compiling And Running A SimMUIAtOr..........ooeiiiiiiiieeeee e 3
1.1 Compiling Under UNIX/LINUX/MAC OS-Xouiiiiiiiiiiiiiiieeeee e 4
1.2 Compiling Under WINAOWS........ueiiiiiieeeieiiiieieee e ettt e e e e e e e e eeee e e e e e ennes 5

1.2.1 Compiling with Ethernet SUPPOIteeeiiiiiii e 5
1.2.2 Compiling Under MINGWoooiiiiiiiieeee e 5
1.2.3 Compiling UNder Visual C4+eeeiiiiiiiiiiieieee e 5
1.3 Compiling Under OpeNVMSot e e e e e e e 6

P2 10 101 F= (o g @] 1YY o (o] g - PP 6

K I @70 o]2 =TT £ OO PRRRRRR 6
3.1 Loading and Saving Programs..........cc..eeeiiioioiiiiiiiiee e 6
3.2 Saving and Restoring Statecooiiiiiiiiiieeee e 7
3.3 ReSEttiNg DEVICES 7
3.4 Connecting and Disconnecting DEVICESccoeeeiiiiiiiiiieiee e 7
3.5 Examining and Changing Stateeuiiiiiiiii e 8
3.6 Evaluating INStrUCIONS......ccciiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 10
3.7 Running A Simulated Program ... 10

3.7.1 Controlling The Simulation Rate ... 10
3.8 Stopping The SIMUIALOLcoiii e 11
3.8.1 Simulator Detected Stop ConditioNS.......cceveeiieiiiiiiiiiieiee e 11
3.8.2 User Specified Stop ConditioNSuueiiiiiiiiiiiiiee e 11
3.8.3 BreaKpOiNtS......covviiiiiiiiiiiiiieeeeeeeeeeeee 11
3.9 Setting Device Parameters ...t 12
3.10 Displaying Parameters and Status..........ccoeeeeioiiiiiiiiiiiiie e 12
3.11 Altering The Simulated Configurationoooiiiii e 13
3.12 CONSO0IE OPLIONS .ot e e e e e e e e e e e e e e 13
3.13 Executing Command FileS.......coooiiiiiiiiiiiiee e 14
3.13.1 Displaying Arbitrary TeX........uuuuuuuueuuueiieieiiieiieiuineiaieeaaaeeeeeennseaeeeeeeeeeeeeeeee—. 15
3.13.2 Testing SIMulator STateooooi e 15
3.14 Executing System COmMmMaNGdS........cc.uuuiiiiiieeeieieiiiiiieee e e e e 15
K S C 1= 111 To T 1= o F PSPPSR 16
3.16 Controlling DebUQGQINGvveeeiiieieiiieeeee e e 16
3.17 EXiting The SIMUIATOT......eeeeieeee e 16

Appendix 1: File Representationsoouvviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 16
LW B =T N B 1= (TSR 16
A2 FIOPPY DISKS. ..ttt ettt e e et e e e e e e e e n e e e e e e e e e e e e ane 16
JANC BV = Te = [1= o= SRS 17
L [T g 0] (=T SRR 17
T I] L7 =1 o 1Y PO SRTR 17

Appendix 2: Debug STAtUSeeeieeee e 18

Revision History (covering Rev 2.0 10 REV 3.5)......uiiiiiiiiiiiiiiiiiiiiiiiieieie e 20

ACKNOWIEAGEMENTS ...ttt e e e e e e e e e e e e e e e e e e nnnnneeeeeaae s 26

Introduction

This memorandum documents the SIMH simulators. These simulators are freeware; refer to the license
terms above for conditions of use. Support is not available. The best way to fix problems or add features is
to read and modify the sources yourself. Alternately, you can send Internet mail to simh AT trailing-edge
DOT com, but a response is not guaranteed.

The simulators use a common command interface. This memorandum describes the features of the
command interface. The details of each simulator are documented in separate, machine-specific
memoranda.

1 Compiling And Running A Simulator

The simulators have been tested on VAX VMS, Alpha VMS, Alpha UNIX, NetBSD, FreeBSD, OpenBSD,
Linux, Solaris, Windows 9x/NT/2000/XP, MacOS 9 and X, and OS/2. Porting to other environments will
require changes to the operating system dependent code in the SIMH libraries (sim_fio.c, sim_timer.c,
sim_console.c, sim_ether.c, sim_sock.c).

The simulator sources are provided in a zip archive and are organized hierarchically. Source files for the
simulator libraries are in the top level directory; source files for each simulator are in individual
subdirectories. Note that the include files in the top level directory are referenced from the subdirectories,
without path identifiers. Your build tool needs to search the top level directory for include files not
present in the simulator-specific directory, or you will have to copy all files from the subdirectories into the
master directory. File manifests for each simulator are given in that simulator's documentation.

The simulators recognize or require a few compile-time #defines:

- The 18b simulators require that the model name be defined as part of the compilation command
line (i.e., PDP4 for the PDP-4, PDP7 for the PDP-7, PDP9 for the PDP-9, PDP15 for the PDP-
15).

- The PDP-10 and IBM 7094 simulators use 64b integer variables, requiring that USE_INT64 be
defined as part of the compilation command line. Since 64b integer declarations vary,
sim_defs.h has conditional declarations for Windows (_int64) and Digital UNIX (long). The
default is GNU C (long long). If your compiler uses a different convention, you will have to
modify sim_defs.h.

- The PDP-10, PDP-11, and VAX simulators share common peripherals. To distinguish the target
system, one of three variables must be defined on the command line: VM_PDP10 for the PDP-
10; VM_PDP11 for the PDP-11; or VM_VAX for the VAX.

- The PDP-11, PDP-11, and VAX simulators optionally support Ethernet. To include Ethernet
emulation, USE_NETWORK must be defined as part of the compilation command line. At
present, Ethernet support has been tested only on Windows, Linux, NetBSD, OpenBSD,
FreeBSD, Solaris, and Alpha VMS, but it should work in any host environment that supports the
Pcap library (see the Ethernet readme file).

- The PDP-11 and VAX simulators optionally support disks and serial devices files greater than
2GB. To include large device support, both USE_INT64 and USE_ADDR64 must be defined as
part of the compilation command line.

- The HP2100 Fast FORTRAN Processor (FFP) and 1000-F CPU options require 64b integer
support. Define HAVE_INT64 (not USE_INT64) as part of the compilation command line if your
host compiler supports 64b integers. On systems without 64b support, the 1000 F-Series CPU
will be unavailable, and FFP extended-precision instructions (e.g., XADD) will be disabled; the
remainder of the FFP instructions will work normally. There may be some compilation warnings.

To start the simulator, simply type its name. (On version of VMS prior to 6.2, the simulators must then be
defined as foreign commands in order to be started by name.) The simulator recognizes three command
line switches: -q, -v, and -e. If -q is specified, certain informational messages are suppressed. The -v and -e
switches pertain only to command files and are described in Section 3.13.

The simulator interprets the arguments on the command line, if any, as the file name and arguments for a DO
command:

% pdpl0 {switches} {<startup file> {arg,arg,...}}

If no file is specified on the command line, the simulator looks for a startup file consisting of the simulator
name (including its path components) plus the extension .ini. If a startup file is specified, either on the
command line or implicitly via the .ini capability, it should contain a series of non-interactive simulator
command, one per line. These commands can be used to set up standard parameters, for example, disk
sizes.

After initializing its internal structures and processing the startup file (if any), the simulator types out its name
and version and then prompts for input with:

1.1 Compiling Under UNIX/Linux/Mac OS-X

The sources originate on a Windows system and have cr-If at the end of every line. For use on UNIX or
Mac, the sources must be converted to UNIX or Mac text conventions. This can be done with the UNZIP
utility (unzip -a).

The supplied makefile will compile the simulators for UNIX systems that support the POSIX TERMIOS. The
VAX and PDP-11 can be compiled with or without Ethernet support. To compile without Ethernet support:

export OSTYPE ! required for Solaris, 0S-X
gmake {target|ALL|clean}

To compile with Ethernet support:

export OSTYPE ! required for Solaris, 0S-X
gmake USE_NETWORK=1 {target|ALL|clean}

Notes for hand compilation:

- The default UNIX terminal handling model is the POSIX TERMIOS interface, which is supported
by Linux, Mac OS/X, and Alpha UNIX. If your UNIX only supports the BSD terminal interface,
BSDTTY must be defined as part of the compilation command line.

- The PDP-8, PDP-11, 18b PDP, PDP-10, and Nova simulators use the math library. If your
UNIX does not link the math library automatically, you must add -Im to the compilation command
line.

Examples:

o)
°

PDP-11 under TERMIOS UNIX:

% cc -DVM_PDP11 pdpll_*.c scp.c sim_*.c -lm -o pdpll
PDP-9 under TERMIOS UNIX:

% cc -DPDP9 pdpl8b_*.c scp.c sim_*.c -lm -o pdp9

PDP-10 under BSD terminal UNIX:

cc -DVM_PDP10 -DUSE_INT64 -DBSDTTY pdplO_*.c scp.c sim_*.c —-1lm -o pdplO

1.2 Compiling Under Windows

1.2.1 Compiling with Ethernet Support

The Windows-specific Ethernet code uses the WinPCAP 4.x package. This package for Windows simulates
the libpcap package that is freely available for Unix systems.

WinPCAP must be installed prior to building the PDP-11 and VAX simulators with Ethernet support.

Download V4.x from http://www.winpcap.org.

Install the package as directed.

Copy the required .h files (bittypes.h, devioctl.h, ip6_misc.h, packet32.h, pcap.h, pcap-stdinc.h)
from the WinPCAP 4.x developer's kit to the top level simulation directory.

Get the required .lib files (packet.lib, wpcap.lib) from the WinPCAP 4.x developer's kit. Then
move the libraries to the standard library directory.

Add -DUSE_NETWORK to the compilation command lines for the PDP-11 and VAX.

1.2.2 Compiling Under MinGW

MinGW (Minimalist GNU for Windows) is a free C compiler available from http://www.mingw.org. Msys is a
minimal set of Unix utilities to support Mingw, also available from http:/www.mingw.org. The distribution
includes a batch file (build_mingw.bat) that will build all the simulators from source. By default, the PDP-11
and VAX are built without Ethernet support. To enable Ethernet support, install WinPCAP as described in
the previous section, and then use the alternative batch file (build_mingw_ether.bat).

1.2.3 Compiling Under Visual C++

Each simulator must be organized as a separate Visual C++ project. Starting from an empty console

application,

Add all the files from the simulator file manifest to the project.

Open the Project Settings (VC++ 98) or Properties (VC++ .NET) dialog box.

Under C/C++, Category: General, add any required preprocessor definitions (for example,
USE_INT64).

Under C/C++, Category: Preprocessor, add the top level simulation directory to the Additional
Include Directories. For the VAX and PDP-10, you must also add the PDP-11 directory.

Under Link, add wsock32.lib and winmm.lib at the end of the list of Object/Module Libraries.

If you are building the PDP-11 and VAX with Ethernet support, you must also add the WinPCAP
libraries (packet.lib, wpcap.lib) to the list of Object/Module libraries.

If you are using Visual C++ .NET, you must turn off /Wp64 (warn about potential 64b incompatibilities) and
disable Unicode processing. You will also have to turn off warning 4996 (“deprecated” string functions), or
lower the warning level to /W1. Otherwise, the compilations will generate a lot of spurious conversion
warnings.

1.3 Compiling Under OpenVMS

Compiling on OpenVMS requires DEC C. The simulators that require 64b (PDP-10 and VAX) will not
compile on OpenVMS/VAX. The SIMH distribution includes an MMS command file descrip.mms that will
build all the simulators from source. An example of hand compilation:

- PDP-8 under VMS:

$ cc scp.c,sim_*.c, [.pdp8]lpdp8*.c
$ link/exec=pdp8 scp.obj,sim_*.obj, [.pdp8lpdp8*.obj

2 Simulator Conventions

A simulator consists of a series of devices, the first of which is always the CPU. A device consists of named
registers and one or more numbered units. Registers correspond to device state, units to device address
spaces. Thus, the CPU device might have registers like PC, ION, etc, and a unit corresponding to main
memory; a disk device might have registers like BUSY, DONE, etc, and units corresponding to individual
disk drives. Except for main memory, device address spaces are simulated as unstructured binary disk files
in the host file system. The sHOW CONFIG command displays the simulator configuration.

A simulator keeps time in terms of arbitrary units, usually one time unit per instruction executed. Simulated
events (such as completion of 1/0) are scheduled at some number of time units in the future. The simulator
executes synchronously, invoking event processors when simulated events are scheduled to occur. Even

asynchronous events, like keyboard input, are handled by polling at synchronous intervals. The sHOW
QUEUE command displays the simulator event queue.

3 Commands

Simulator commands consist of a command verb, optional switches, and optional arguments. Switches take
the form:

—<letter>{<letter>...}

Multiple switches may be specified separately or together: -abcd and -a -b -¢ -d are treated identically.
Verbs, switches, and other input (except for file names) are case insensitive.

Any command beginning with semicolon (;) is considered a comment and ignored.
3.1 Loading and Saving Programs

The LoAD command (abbreviation L.0) loads a file in binary loader format:

load <filename> {implementation options}

The types of formats supported are implementation specific. Options (such as load within range) are also
implementation specific.

The puMP command (abbreviation DU) dumps memory in binary loader format:
dump <filename> {implementation options}

The types of formats supported are implementation specific. Options (such as dump within range) are also
implementation specific.

3.2 Saving and Restoring State

The savE command (abbreviation sa) save the complete state of the simulator to a file. This includes the
contents of main memory and all registers, and the 1/0O connections of devices except network devices (such
as Ethernet controllers and terminal multiplexers):

save <filename>
The RESTORE command (abbreviation REST, alternately GET) restores a previously saved simulator state:
restore <filename>

Note: SAVE file format compresses zeroes to minimize file size.
3.3 Resetting Devices

The RESET command (abbreviation RE) resets a device or the entire simulator to a predefined condition. If
switch -p is specified, the device is reset to its power-up state:

RESET reset all devices
RESET -p powerup all devices
RESET ALL reset all devices
RESET <device> reset specified device

Typically, RESET stops any in-progress I/O operation, clears any interrupt request, and returns the device to
a quiescent state. It does not clear main memory or affect 1/0O connections.

3.4 Connecting and Disconnecting Devices

Except for main memory and network devices, units are simulated as unstructured binary disk files in the
host file system. Before using a simulated unit, the user must specify the file to be accessed by that unit.
The ATTACH (abbreviation AT) command associates a unit and a file:

ATTACH <unit> <filename>

If the file does not exist, and the -e switch was not specified, a new file is created, and an appropriate
message is printed. If the -e switch was specified, a new file is not created, and an error message is printed.

If the -r switch is specified, or the file is write protected, ATTACH tries to open the file read only. If the file
does not exist, or the unit does not support read only operation, an error occurs. Input-only devices, such as
paper-tape readers, and devices with write lock switches, such as disks and tapes, support read only
operation; other devices do not. If a file is attached read only, its contents can be examined but not
modified.

For simulated magnetic tapes, the ATTACH command can specify the format of the attached tape image file:
ATTACH -f <tape_unit> <format> <filename>

The currently supported tape image file formats are:

SIMH SIMH simulator format

El1l E1ll simulator format

TPC TPC format

P7B Pierce simulator 7-track format

The tape format can also be set with the SET command prior to ATTACH:

SET <tape_unit> FORMAT=<format>
ATT <tape_unit> <filename>

The format of an attached file can be displayed with the sHOW command:
SHOW <tape_unit> FORMAT

For Telnet-based terminal emulators, the ATTACH command associates the master unit with a TCP/IP port:
ATTACH <unit> <port>

The port is a decimal number between 1 and 65535 that is not used by standard TCP/IP protocols.

For Ethernet emulators, the ATTACH command associates the simulated Ethernet with a physical Ethernet
device:

ATTACH <unit> <physical device name>

The DETACH (abbreviation DET) command breaks the association between a unit and a file, port, or network
device:

DETACH ALL detach all units
DETACH <unit> detach specified unit

The Ex1T command performs an automatic DETACH ALL.
3.5 Examining and Changing State

There are four commands to examine and change state:

- EXAMINE (abbreviated E) examines state

- DEPOSIT (abbreviated D) changes state

- IEXAMINE (interactive examine, abbreviated IE) examines state and allows the user to
interactively change it

- IDEPOSIT (interactive deposit, abbreviated 1D) allows the user to interactively change state

All four commands take the form

command {modifiers} <object list>

Deposit must also include a deposit value at the end of the command.

There are four kinds of modifiers: switches, device/unit name, search specifier, and for EXAMINE, output file.
Switches have been described previously. A device/unit name identifies the device and unit whose address
space is to be examined or modified. If no device is specified, the CPU (main memory)is selected; if a
device but no unit is specified, unit 0 of the device is selected.

The search specifier provides criteria for testing addresses or registers to see if they should be processed.
A specifier consists of a logical operator, a relational operator, or both, optionally separated by spaces.

{<logical op> <value>} <relational op> <value>

where the logical operator is & (and), | (or), or * (exclusive or), and the relational operator is = or == (equal),
l'or I= (not equal), >= (greater than or equal), > (greater than), <= (less than or equal), or < (less than). If a
logical operator is specified without a relational operator, it is ignored. If a relational operator is specified
without a logical operator, no logical operation is performed. All comparisons are unsigned.

The output file modifier redirects command output to a file instead of the console. An output file modifier
consists of @ followed by a valid file name.

Modifiers may be specified in any order. If multiple modifiers of the same type are specified, later modifiers
override earlier modifiers. Note that if the device/unit name comes after the search specifier, the search
values will interpreted in the radix of the CPU, rather than of the device/unit.

The "object list" consists of one or more of the following, separated by commas:

register the specified register

register [subl-sub?2] the specified register array locations,
starting at location subl up to and
including location sub2

register [subl/length] the specified register array locations,
starting at location subl up to but
not including subl+length

register [ALL] all locations in the specified register
array

registerl-register2 all the registers starting at registerl
up to and including register?2

address the specified location

addressl-address?2 all locations starting at addressl up to
and including address?2

address/length all location starting at address up to
but not including address+length

STATE all registers in the device

ALL all locations in the unit

Switches can be used to control the format of display information:

-a display as ASCII

-C display as character string

-m display as instruction mnemonics
-0 display as octal

-d display as decimal

-h display as hexadecimal

The simulators typically accept symbolic input (see documentation with each simulator).

Examples:

ex 1000-1100 examine 1000 to 1100

de PC 1040 set PC to 1040

ie 40-50 interactively examine 40:50

ie >1000 40-50 interactively examine the subset
of locations 40:50 that are >1000

ex rx0 50060 examine 50060, RX unit O

ex rx sbuf[3-6] examine SBUF[3] to SBUF[6] in RX

de all O set main memory to 0

de &77>0 0 set all addresses whose low order
bits are non-zero to 0

ex -m (@memdump.txt 0-7777 dump memory to file

Note: to terminate an interactive command, simply type a bad value (eg, XYZ) when input is requested.
3.6 Evaluating Instructions

The EVAL command evaluates a symbolic instruction and returns the equivalent numeric value. This is
useful for obtaining numeric arguments for a search command:

EVAL <expression>
3.7 Running A Simulated Program

The RUN command (abbreviated RU) resets all devices, deposits its argument (if given) in the PC, and starts
execution. If no argument is given, execution starts at the current PC.

The Go command does not reset devices, deposits its argument (if given) in the PC, and starts execution. If
no argument is given, execution starts at the current PC.

The coNT command (abbreviated c0) does not reset devices and resumes execution at the current PC.

The sTEP command (abbreviated S) resumes execution at the current PC for the number of instructions
given by its argument. If no argument is supplied, one instruction is executed.

The BoOT command (abbreviated BO) resets all devices and bootstraps the device and unit given by its
argument. If no unit is supplied, unit 0 is bootstrapped. The specified unit must be attached.

3.7.1 Controlling The Simulation Rate

By default, the simulator runs as fast as possible (although at lower than normal priority) and will consume
all available processing resources on the host system. This will raise power consumption (and the operating
temperature) of many PC'’s, and drain the battery of a laptop.

The SET THROTTLE command allows the user to reduce the effective execution rate to a specified number
of instructions per second, or to a specified percentage of total host computing time:

SET THROTTLE xM set execution rate to x mips
SET THROTTLE xK set execution rate to x kips
SET THROTTLE x% limit simulator to x% of host time

Throttling is only available on host systems that implement a precision real-time delay function.

The SET NOTHROTTLE command turns off throttling. The sHOW THROTTLE command shows the current
settings for throttling.

Some simulators implement a different form of resource management called idling. Idling suspends

simulated execution whenever the program running on the simulator is doing nothing, and runs the simulator
at full speed when there is work to do. Throttling and idling are mutually exclusive.

3.8 Stopping The Simulator
Programs run until the simulator detects an error or stop condition, or until the user forces a stop condition.
3.8.1 Simulator Detected Stop Conditions

These simulator-detected conditions stop simulation:
- HALT instruction. If a HALT instruction is decoded, simulation stops.
- Breakpoint. The simulator may support breakpoints (see below).

- /O error. If an I/O error occurs during simulation of an I/O operation, and the device stop-on-1/O-
error flag is set, simulation usually stops.

- Processor condition. Certain processor conditions can stop simulation; these are described with the
individual simulators.

3.8.2 User Specified Stop Conditions

Typing the interrupt character stops simulation. The interrupt character is defined by the WRU (where are
you) console option and is initially set to 005 ("E).

3.8.3 Breakpoints

A simulator may offer breakpoint capability. A simulator may define breakpoints of different types, identified
by letter (for example, E for execution, R for read, W for write, etc). At the moment, most simulators support
only E (execution) breakpoints.

Associated with a breakpoint are a count and, optionally, one or more actions. Each time the breakpoint is
taken, the associated count is decremented. If the count is less than or equal to 0, the breakpoint occurs;
otherwise, it is deferred. When the breakpoint occurs, the optional actions are automatically executed.
A breakpoint is set by the BREAK command:

BREAK {-types} {<addr range>{[count]}, {addr range...}}{;action;action...}
If no type is specified, the simulator-specific default breakpoint type (usually E for execution) is used. If no

address range is specified, the current PC is used. As with EXAMINE and DEPOSIT, an address range may
be a single address, a range of addresses low-high, or a relative range of address/length. Examples:

BREAK set E break at current PC

BREAK —-e 200 set E break at 200

BREAK 2000/2[2] set E breaks at 2000,2001 with count = 2
BREAK 100;EX AC;D MQ O set E break at 100 with actions EX AC and

D MO O

BREAK 100; delete action on break at 100
Currently set breakpoints can be displayed with the SHOW BREAK command:

SHOW {-types} BREAK {ALL|<addr range>{,<addr range>...}}
Locations with breakpoints of the specified type are displayed.

Finally, breakpoints can be cleared by the NOBREAK command.
3.9 Setting Device Parameters

The SET command (abbreviated SE) changes the status of one or more device parameters:
SET <device> <parameter>{=<value}, {<parameter>{=<value>}, ...}
or one or more unit parameters:
SET <unit> <parameter>{=<value>}, {<parameter>{=<value>}, ...}
Most parameters are simulator and device specific. Disk drives, for example, can usually be set
WRITEENABLED or write LOCKED; if a device supports multiple drive types, the SET command can be used

to specify the drive type.

All devices recognize the following parameters:

OCT sets the data radix = 8
DEC sets the data radix = 10
HEX sets the data radix = 16

3.10Displaying Parameters and Status

The sHOWw command (abbreviated sH) displays the status of one or more device parameters:

SHOW {<modifiers} <device> <parameter>{=<value>},
{<parameter>{=<value>}, ...}

or one or more unit parameters:

SHOW {<modifiers} <unit> <parameter>{=<value>},
{<parameter>{=<value>}, ...}

There are two kinds of modifiers: switches and output file. Switches have been described previously. The
output file modifier redirects command output to a file instead of the console. An output file modifier consists
of @ followed by a valid file name.

All devices implement parameters RADIX (the display radix), MODIFIERS (list of valid modifiers), and NAMES
(logical name). Other device and unit parameters are implementation-specific.

SHOW is also used to display global simulation state:
SHOW CONFIGURATION shows the simulator configuration and

the status of all devices and units
SHOW DEVICES shows the simulator configuration

SHOW MODIFIERS shows all available modifiers

SHOW NAMES show all logical names

SHOW QUEUE shows the simulator event queue

SHOW TIME shows the elapsed time since the last RUN
SHOW VERSION show the simulator version and options
SHOW <device> shows the status of the named device

SHOW <unit> shows the status of the named unit

SHOW QUEUE and sSHOW TIME display time in simulator-specific units; typically, one time unit represents one
instruction execution.

3.11Altering The Simulated Configuration

In most simulators, the SET <device> DISABLED command removes the specified device from the
configuration. A DISABLED device is invisible to running programs. The device can still be RESET, but it
cannot be ATTAChed, DETACHed, or BOOTed. SET <device> ENABLED restores a disabled device to a
configuration.

Most multi-unit devices allow units to be enabled or disabled:

SET <unit> ENABLED
SET <unit> DISABLED

When a unit is disabled, it will not be displayed by SHOW DEVICE.
The standard device hames can be supplemented with logical names. Logical names must be unique within
a simulator (that is, they cannot be the same as an existing device name). To assign a logical name to a
device:
ASSIGN <device> <log—-name> assign log-name to device
To remove a logical name:
DEASSIGN <device> remove logical name
To show the current logical name assignment:
SHOW <device> NAMES show logical name, if any
To show all logical names:

SHOW NAMES
3.12Console Options

Console options are controlled by the SET CONSOLE command.

The console terminal normally runs in the controlling window. Optionally, the console terminal can be
connected to a Telnet port. This allows systems to emulate a VT100 using the built-in terminal emulation of
the Telnet client.

SET CONSOLE TELNET=<port> connect console terminal to Telnet session
on port
SET CONSOLE NOTELNET disable console Telnet

Output to the console can be logged simultaneously to a file:

SET CONSOLE LOG=<filename> log console output to file
SET CONSOLE NOLOG disable logging

The console provides a limited key remapping capability:

SET CONSOLE WRU=<value> interpret ASCII code value as WRU

SET CONSOLE BRK=<value> interpret ASCII code value as BREAK
(0 disables)

SET CONSOLE DEL=<value> interpret ASCII code value as DELETE

SET CONSOLE PCHAR=<value> bit mask of printable characters in range
[31,0]

Values are hexadecimal on hex CPU's, octal on all others.

The sHOwW CONSOLE command displays the current state of console options:

SHOW CONSOLE show all console options

SHOW CONSOLE TELNET show console Telnet state
SHOW CONSOLE LOG show console logging state
SHOW CONSOLE WRU show value assigned to WRU
SHOW CONSOLE BRK show value assigned to BREAK
SHOW CONSOLE DEL show value assigned to DELETE
SHOW CONSOLE PCHAR show value assigned to PCHAR

Both SET CONSOLE and SHOW CONSOLE accept multiple parameters, separated by commas, e.g.,

SET CONSOLE WRU=5,DEL=177 set code values for WRU and DEL
3.13 Executing Command Files

The simulator can execute command files with the DO command:
DO <filename> {arguments...} execute commands in file

The po command allows command files to contain substitutable arguments. The string %n, where n is
between 1 and 9, is replaced with argument n from the Do command line. The string %0 is replaced with
<filename>. The sequences \% and \\ are replaced with the literal characters % and \, respectively.
Arguments with spaces can be enclosed in matching single or double quotation marks.

If the switch -v is specified, the commands in the file are echoed before they are executed.

If the switch -e is specified, command processing (including nested command invocations) will be aborted if
any error is encountered. Without the switch, all errors except ASSERT failures will be ignored, and
command processing will continue.

DO commands may be nested up to ten invocations deep.

Several commands are particularly useful within command files. While they may be executed interactively,
they have only limited functionality when so used.

3.13.1 Displaying Arbitrary Text

The EcHO command is a useful way of annotating command files. ECHO prints out its argument on the
console:

ECHO <string> output string to console

If there is no argument, ECHO prints a blank line on the console. This may be used to provide spacing in
the console display or log.

3.13.2 Testing Simulator State

The AsSERT command tests a simulator state condition and halts command file execution if the condition is
false:

ASSERT {<dev>} <reg>{<logical-op><value>}<conditional-op><value>

If <dev> is not specified, CPU is assumed. <reg> is a register (scalar or subscripted) belonging to the
indicated device. The <conditional-op> and optional <logical-op> are the same as those used for "search
specifiers" by the EXAMINE and DEPOSIT commands (see above). The <value>s are expressed in the radix
specified for <reg>, not in the radix for the device.

If the <logical-op> and <value> are specified, the target register value is first altered as indicated. The result
is then compared to the <value> via the <conditional-op>. If the result is false, an "Assertion failed"
message is printed, and any running command file is aborted. Otherwise, the command has no effect.

For example, a command file might be used to bootstrap an operating system that halts after the initial load
from disk. The ASSERT command is then used to confirm that the load completed successfully by
examining the CPU's "A" register for the expected value:

; OS bootstrap command file

4

ATTACH DSO os.disk

BOOT DS

; A register contains error code; 0 = good boot
ASSERT A=0

ATTACH MTO sys.tape

ATTACH MT1 user.tape

RUN

In the example, if the A register is not 0, the "ASSERT A=0" command will be echoed, the command file will

be aborted with an "Assertion failed (A=0)" message. Otherwise, the command file will continue to bring up
the operating system.

3.14 Executing System Commands

The simulator can execute operating system commands with the ! (spawn) command:
! <host operating system command>

If no operating system command is provided, the simulator attempts to launch the host operating system's
command shell.

3.15Getting Help

The HELP command prints out information about a command or about all commands:

HELP print all HELP messages
HELP <command> print HELP for command

3.16 Controlling Debugging

Some simulated devices may provide debug printouts to help in diagnosing complicated problems. Debug
output may be sent to a variety of places, or disabled entirely:

SET CONSOLE DEBUG=STDOUT direct debug output to stdout
SET CONSOLE DEBUG=STDERR direct debug output to stderr
SET CONSOLE DEBUG=LOG direct debug output to log file
SET CONSOLE DEBUG=<filename> direct debug output to file

SET CONSOLE NODEBUG disable debug output

If debug output is enabled, individual devices can be controlled with the SET command. If a device has only
a single debug flag:

SET <device> DEBUG enable device debug output
SET <device> NODEBRUG disable device debug output

If the device has individual, named debug flags:

SET <device> DEBUG enable all debug flags

SET <device> DEBUG=nl;n2;... enable debug flags nl, n2,
SET <device> NODEBUG=nl;n2;... disable debug flags nl, n2,
SET <device> NODEBRUG disable all debug flags

If debug output is directed to stdout, it will be intermixed with normal simulator output.
3.17Exiting The Simulator

EXIT (synonyms QUIT and BYE) returns control to the operating system.

Appendix 1: File Representations

All file representations are little-endian. On big-endian hosts, the simulator automatically performs any
required byte swapping.

A.1 Hard Disks

Hard disks are represented as unstructured binary files of 16b data items for the 12b and 16b simulators, of
32b data items for the 18b, 24b, and 32b simulators, and 64b for the 36b simulators.

A.2 Floppy Disks

Floppy disks are represented as unstructured binary files of 8b data items. They are nearly identical to the
floppy disk images for Doug Jones' PDP-8 simulator but lack the initial 256 byte header. A utility for
converting between the two formats is easily written.

A.3 Magnetic Tapes

Magnetic tapes are represented as unstructured binary files of 8b data items. Each record starts with a 32b
record header, in little endian format. If the record header is not a special header, it is followed by n 8b
bytes of data, followed by a repeat of the 32b record header. A 1 in the high order bit of the record header
indicates an error in the record. If the byte count is odd, the record is padded to even length; the pad byte is
undefined.

Special record headers occur only once and have no data. The currently defined special headers are:

0x00000000 file mark
OXFFFFFFFF end of medium
OxXFFFFFFFE erase gap

Magnetic tapes are endian independent and consistent across simulator families. A magnetic tape
produced by the Nova simulator will appear to have its 16b words byte swapped if read by the PDP-11
simulator.

SIMH can read and write E11-format magnetic tape images. E11 format differs from SIMH format only for
odd-length records; the data portion of E11 records is not padded with an extra byte.

SIMH can read TPC-format magnetic tape images. TPC format uses a 16b record header, with 0x0000
denoting file mark. The record header is not repeated at the end of the record. Odd-length records are
padded with an extra byte.

SIMH can read Pierce-format seven-track magnetic tape images. Pierce format uses only 6 data bits, and
one parity bit, in each byte. The high order bit indicates start of record. End of file is indicated by a record of
one (occasionally two) bytes consisting of code 017 (octal).

A.4 Line Printers

Line printer output is represented by an ASCII file of lines separated by the newline character. Overprinting
is represented by a line ending in return rather than newline.

A.5 DECtapes

DECtapes are structured as fixed length blocks. PDP-1/4/7/9/15 DECtapes use 578 blocks of 256 32b
words. Each 32b word contains 18b (6 lines) of data. PDP-11 DECtapes use 578 blocks of 256 16b words.
Each 16b word contains 6 lines of data, with 2b omitted. This is compatible with native PDP-11 DECtape
dump facilities, and with John Wilson's PUTR Program. PDP-8 DECtapes use 1474 blocks of 129 16b
words. Each 16b word contains 12b (4 lines) of data. PDP-8 OS/8 does not use the 129th word of each
block, and OS/8 DECtape dumps contain only 128 words per block. A utility, DTOS8CVT.C, is provided to
convert OS/8 DECtape dumps to simulator format.

A known issue in DECtape format is that when a block is recorded in one direction and read in the other, the
bits in a word are scrambled (to the complement obverse). The PDP-11 deals with this problem by
performing an automatic complement obverse on reverse writes and reads. The other systems leave this
problem to software.

The simulator represents this difference as follows. On the PDP-11, all data is represented in normal form.
Data reads and writes are not direction sensitive; read all and write all are direction sensitive. Real
DECtapes that are read forward will generate images with the correct representation of the data.

On the other systems, forward write creates data in normal form, while reverse write creates data in
complement obverse form. Forward read (and read all) performs no transformations, while reverse read
(and read all) changes data to the complement obverse. Real DECtapes that are read forward

will generate data in normal form for blocks written forward, and complement obverse data for blocks written
in reverse, corresponding to the simulator format.

Appendix 2: Debug Status

The debug status of each simulated CPU and device is as follows:

System PDP-8 PDP-11 Nova PDP-1 18b PDP
device
CPU
FPU
EIS/CIS
console