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1 Introduction 

1.1 What are SimTK, Simbody, and Molmodel? 

SimTK is the Simbios Biosimulation Toolkit, a collection of open source software tools 

supporting high-performance physics based simulation of biological structures. SimTK 

includes a variety of application programs and a software development kit (SDK). The SDK 

includes a family of application programming interfaces (APIs) for convenient and efficient 

handling of the various tasks that arise in physics based simulation, including vector and 

matrix arithmetic, linear algebra, numerical integration, optimization, and so on. Most 

importantly, the SDK contains  

 Simbody, an API for performing internal coordinate simulations of multibody 

systems, and  

 OpenMM, an API for GPU-accelerated computation of molecular force fields, and 

 Molmodel, an API that uses Simbody to build internal coordinate molecule models 

that can use OpenMM-accelerated force fields, and 

 OpenSim API, which uses Simbody to build internal coordinate models of 

biomechanical systems, such as human musculoskeletal models for studying gait 

disorders. 

All SimTK software is hosted and distributed via simtk.org. But note that simtk.org also 

serves as a biosimulation community hosting site so there are also many projects hosted 

there that are not part of the SimTK toolkit. 

OpenMM is used independently for particle-based molecular simulations and is packaged 

and released separately from Simbody and Molmodel. We won’t present the OpenMM API 

here; see https://simtk.org/home/openmm for more information. OpenSim API is also 

packaged and released separately from Simbody and Molmodel, as part of the OpenSim 

project that includes a complete GUI for musculoskeletal simulation. We won’t present the 

OpenSim API here either; see https://simtk.org/home/opensim for more information.  

 

https://simtk.org/home/openmm
https://simtk.org/home/opensim
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Simbody is developed and distributed via GitHub at https://github.com/simbody, with 

description and documentation at https://simtk.org/home/simbody. It is used for 

biomechanical simulations (see OpenSim), as well as related areas such as robotics, avatars, 

and virtual world simulations. 

Molmodel is developed and distributed via the project https://simtk.org/home/molmodel. It 

extends the Simbody API to add molecule modeling and analysis features, and is thus 

dependent on Simbody. It can optionally use OpenMM too, so installation of those packages 

is a prerequisite for installation of Molmodel. 

1.2 What is a multibody system? 

In this guide we will discuss construction of internal coordinate multibody systems with 

Simbody, and include some examples of using the Molmodel API to make internal 

coordinate multibody models of molecules. Let’s take a moment to consider what that 

means. 

A multibody system is a model of a physical system composed of mass-carrying objects, each 

of which is rigid or nearly rigid, but which can move significantly relative to each other. Here 

are some examples of multibody systems: 

 A human skeleton consists of rigid bones that move relative to each other by bending 

at joints. 

 A protein may be viewed as a collection of atoms or groups of atoms that are 

internally rigid, but move relative to each other. 

 An automobile engine consists of gears, pistons, and other rigid parts that move 

relative to each other to produce overall motion. 

Figure 1 shows some physical systems that can be modeled as multibody systems. 

https://github.com/simbody
https://simtk.org/home/simbody
https://simtk.org/home/molmodel
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Now let’s consider what is meant by an internal coordinate multibody model. Suppose you 

are creating a computer model of a human skeleton. One possible approach would be to 

independently specify the position and orientation of every bone. Although that could work, 

it isn’t a very natural way to describe a skeleton. It omits all information about connectivity: 

the fact that bones are attached to each other, that they can only move in very limited ways, 

and that moving an arm should automatically cause the hand to move as well. You therefore 

would need to add a very large number of constraints to the system to make it move in a 

physically realistic way. 

An alternative approach is to describe the system in terms of its internal coordinates. Rather 

than specifying six degrees of freedom (three translations and three rotations) for each bone, 

you specify only the ways in which the skeleton can actually move: for example, the angle by 

which the right elbow is bent. The result is a simpler, more concise description of the state of 

the system at any point in time. It also is computationally much more efficient, since it 

requires many fewer constraints. However, the underlying implementation is considerably 

more difficult in internal coordinates than in Cartesian coordinates. 

This is what Simbody, SimTK’s multibody dynamics engine, does. It allows you to describe a 

multibody system in whatever way is most natural. And it takes care of all the hard parts for 

you: transforming between internal and Cartesian coordinates, calculating the inertial forces 

that arise from rigid body motion, determining the effect of forces on internal coordinates, 

imposing constraints, integrating equations of motion in terms of internal coordinates, and 

many other details that you really don’t want to have to worry about. And it does all of these 

things in ways that are efficient, robust, and numerically accurate. 

 

 
Mechanical U-joint 

 

Figure 1. Some multibody systems. 
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1.3 Using this manual 

This manual is intended as a starting place for new Simbody and Molmodel users. An 

overview of the theory and architecture of Simbody is given in chapter 1. Detailed 

installation instructions are provided in chapter 3, for Linux, Mac, or Windows installation. 

Then a series of tutorial examples are given in chapter 4 for a simple Simbody example. 

Chapter 5 steps back to take a look at some of the basic features of the Simbody API. Then 

we return to examples in chapter 1 which presents a more complex example using Molmodel 

to construct a Simbody model of a protein molecule, and then exercises a variety of Simbody 

features to perform studies of the molecule. 

1.4 Getting more information 

The Simbody project home page https://simtk.org/home/simbody is the place to start for 

more information. On the Documents page are this document and others including an 

Advanced User’s Guide, the Simbody Theory Manual, technical papers, and the complete 

Doxygen-generated reference documentation for the Simbody API: 

https://simtk.org/api_docs/simbody/latest/index.html. (These are also available in the 

doc/api subdirectory of your Simbody installation.) 

Under Public Forums, you can find the Simbody help forum, which is a great way to get 

personalized assistance with any problems or questions you have. If you want to report a bug 

or request a new feature, the feature and bug trackers are under the Advanced tab. 

There is also a Wiki on which you can find, and contribute, additional practical information 

about using Simbody. 

Molmodel-specific documentation, forums, wiki, etc. are handled analogously via the 

Molmodel project home page at https://simtk.org/home/molmodel. If you are a Molmodel 

user and aren’t sure whether you are seeing something Molmodel specific, go ahead and use 

the Molmodel project anyway and we’ll move it to Simbody if need be.  

1.5 License 

Simbody and Molmodel are licensed under the extremely permissive MIT license, making 

them freely available for any purpose. For details, see 

http://wiki.simtk.org/simbody/LicenseAndCopyright.  

https://simtk.org/home/simbody
https://simtk.org/api_docs/simbody/latest/index.html
https://simtk.org/home/molmodel
http://wiki.simtk.org/simbody/LicenseAndCopyright
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1.6 How to acknowledge us 

Our license does not require that you acknowledge us, but we and our sponsors would be 

grateful if you did anyway! If our hard work has helped you with yours, please throw us a 

bone and mention on your "About" page and in your documentation that you are using 

Simbody from https://simtk.org/home/simbody. Where appropriate, please cite this paper:  

Michael A. Sherman, Ajay Seth, Scott L. Delp, “Simbody: multibody dynamics for 
biomedical research,” Procedia IUTAM 2:241-261 (2011) 
doi:10.1016/j.piutam.2011.04.023 

 
We would be particularly grateful if you mention that Simbody is primarily funded by NIH 

Roadmap grant U54 GM072970. We appreciate that support very much, and the NIH 

appreciates knowing that its funds are having an impact, particularly on medical research 

and human health.  

https://simtk.org/home/simbody.




 

 

2  Simbody theory and 

architecture overview 

This chapter provides brief background material on the mathematical background for 

Simbody, the architecture as seen through the API, and the component modules that 

together constitute the installed Simbody package. For a much more detailed discussion, see 

the Simbody Theory Manual (available on the Simbody project’s Documents page) and the 

following paper: 

Michael A. Sherman, Ajay Seth, Scott L. Delp, “Simbody: multibody dynamics for 
biomedical research,” Procedia IUTAM 2:241-261 (2011) 
doi:10.1016/j.piutam.2011.04.023 
 

You can find this and other papers on the Simbody project’s Documents and Publications 

pages. 

2.1 Mathematical Overview 

In the previous section, we defined a multibody system as a model of a “physical system.” 

That is one way to think of it, but it is not the only way. After all, simulations can only work 

with virtual objects, not physical ones. From the simulation’s perspective, a multibody 

system is a system of equations. If you have designed it well, the behavior of those equations 

will in some way reflect the behavior of the physical system you are trying to simulate. 

More specifically, the state of the system at any moment in time is described by a vector of 

state variables. For example, a human skeleton could be described by the current angle and 

angular velocity of every joint, plus the overall motion of the torso. We refer to this state 

vector as y. The job of a simulation is to numerically integrate the equations of motion 

 ( , )
d

t
dt


y

f y  (1) 

to produce a complete time history y(t), called a trajectory. Here the function f(t, y) reflects 

the forces acting on the bodies and the laws of physics. 
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The vector of state variables can be subdivided into generalized coordinates, which we refer 

to as q, generalized speeds, which we refer to as u, and auxiliary variables, which we refer 

to as z. For example, the generalized coordinates of a human skeleton would be the set of 

angles for all the joints, and the orientation and position of the torso, while the generalized 

speeds would be the corresponding angular and linear velocities. If you were simulating a 

person walking and wanted to keep track of the total energy used as they walked, that would 

be an auxiliary state variable z; it does not describe the configuration of the skeleton, but is 

defined by a differential equation so would need to be integrated along with the other state 

variables. The full state vector y is the concatenation of these subvectors: y = [q, u, z]. 

The use of generalized coordinates avoids the need for most constraints because they are 

embedded in the coordinate basis. However, it sometimes is necessary to impose additional 

constraints on the behavior of a system. For example, some proteins contain disulfide bonds 

that connect two distant parts of the chain. This is typically modeled as a constraint 

requiring the distance between the two bonded atoms to remain fixed. Mathematically, a 

constraint is an algebraic equation which must be satisfied at all times during the 

simulation: 

 ( , , ) 0c t q u  (2) 

There is one such equation for every constraint imposed on the system. Together, they 

represent a manifold on which the state vector is required to lie at all times. 

The above discussion assumes the system can be modeled as evolving continuously 

according to a set of differential and algebraic equations. In many cases, that is not enough. 

A system may change discontinuously at discrete times. For example, suppose you are 

modeling a person walking. As long as a foot is in the air, it has no interaction with the 

ground. But for some methods of modeling contact, you must monitor its height, and when it 

touches the ground, you must turn on a constraint to prevent it from passing down into the 

ground or sliding along the ground. You then monitor the net force acting on the foot, and 

when you see that it is directed upward, you release the constraint so the foot can rise back 

off the ground again. 

Mathematically, this is modeled with event trigger functions. These are arbitrary functions 

of time and the state variables which are monitored continuously during the simulation. An 

event is said to occur when a trigger function crosses through 0: 
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 ( , ) 0e t y  (3) 

When an event occurs, the corresponding event handler is invoked, which can modify the 

state in arbitrary, discontinuous ways. 

We also extend the state description to include a set of discrete variables, which we refer to 

as d. In the example above, you would use discrete variables to keep track of which 

constraints were currently turned on. Discrete variables are not modified by equation (1). 

They are changed only by event handlers, which modify them at discrete times. The forces, 

constraints, and event functions in equations (1)-(3) may all depend on the current values of 

discrete variables. Discrete variables can hold values of any type. 

With discrete variables included, and showing the full set of constraints and event trigger 

functions, our three equations are now:  

 ( ; , )
d

t
dt


y

f d y  (4) 

 0 ( ; , , )t c d q u  (5) 

 0 ( ; , )t e d y  (6) 

We show d set off by a semicolon as a reminder that discrete variables are held constant 

during continuous intervals when t and y are changing.  

2.2 Systems and States 

Simbody uses two classes to represent the information associated with a multibody system: 

System and State. You can think of these as the “constant” and “mutable” (non-constant) 

parts of the system, respectively. A System object contains everything that is expected to 

remain constant over the course of a simulation (including the code), while a State object 

stores anything that is expected to change. 
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More specifically, a State object stores the following values: 

 The time t. 

 The continuous state variables y. 

 The discrete state variables d. 

It also provides spacing for storing other values that are calculated based on the state 

variables listed above. This will be discussed shortly. 

A State object is purely a place for storing data. In contrast, a System provides much of the 

logic for the simulation. System functions include the following: 

 It defines what information will be stored in a State (how many generalized 

coordinates, how many generalized speeds, etc.). 

 It provides routines to calculate the force function f(d; t, y), the vector of constraint 

functions c(d; t, q, u), and the vector of event trigger functions e(d; t, y). 

 It provides a routine which takes a state that does not satisfy the constraints, and 

projects it onto the constraint manifold. 

 It provides routines to handle events when they occur. 

This division has several important advantages. You can easily save a copy of the State at any 

point in the simulation, and be confident that you have not missed any other information 

hidden away in some other object. It also ensures that derived quantities remain 

synchronized with the state variables they were calculated based on, which eliminates a large 

class of potential bugs. 

  

System 

Figure 2. A System is 
constant once constructed; 
everything changeable 
about it is stored in separate 

State objects. S
ta

te
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2.3 Systems and Subsystems 

Now let’s look a bit more closely at how a System is put together. Each System is composed 

of one or more subsystems, each represented by a Subsystem object. Most of the functions 

described above are actually performed by the Subsystems, not by the System itself. For 

example, the set of state variables for a System is simply the union of the state variables 

defined by all its Subsystems. The force calculated by the System is simply the sum of the 

forces calculated by all of its Subsystems. And so on. 

 

This allows you to create a System in a modular way. Subsystems can interact with each 

other, so you can split up your System in whatever way seems most convenient. For example, 

one Subsystem might define a subset of the bodies in the system, and all the forces, 

constraints, and events related to them. Alternatively, one Subsystem might define all the 

state variables, a different Subsystem define the forces acting on them, and a third 

Subsystem define a set of events. 

Simbody provides a number of standard Subsystems ready for you to use. For example, 

SimbodyMatterSubsystem allows you to build up arbitrary multibody systems out of a large 

collection of joint types, while DuMMForceFieldSubsystem (in the Molmodel API) provides 

a standard force field for use in molecular dynamics simulations. You will rarely need to 

actually write a new Subsystem yourself. 

In addition to whatever other Subsystems it has, every System has a default Subsystem. It 

implements some standard functionality that is required for all Systems. We will see some 

examples of what it can be used for later. 

S
ta

te
 

System 

Subsystem 

Figure 3. Systems are 

composed of Subsystems. 
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2.4 The Realization Cache 

The state variables t, y, and d collectively represent a complete description of the state of the 

system at a given time. On the other hand, there are lots of other numbers you might want to 

know. Some examples include 

 The position of each body in Cartesian coordinates 

 The force acting on each body 

 The resulting acceleration of each internal coordinate 

 The values of event trigger functions 

These are not really independent information. Given the state variables, you can calculate 

them whenever you want. On the other hand, some of them may be expensive to calculate, so 

you want to avoid recalculating them more often than necessary. The State object therefore 

provides space for storing these derived values. This space is called the realization cache, 

and the process of calculating the values stored in it is known as realizing the state. 

If you look at the list of examples above, you will see that they need to be calculated in a 

particular order. The Cartesian coordinates of each body generally need to be known before 

the forces can be calculated, and the forces need to be known before the internal coordinate 

accelerations can be calculated. It also is clear that not all of these pieces of information will 

be needed in every situation. If you only care about the positions of bodies, you don’t want to 

waste time on an expensive force calculation. 

The realization cache is therefore divided into a series of stages. Each piece of information in 

the cache belongs to a particular stage. When you want to realize part of the cache, you 

specify what stage to realize it up to. This causes the information belonging to that stage and 

all previous stages to be calculated. In other words, whenever you want to get some 

information from the cache, you must first make sure the state has been realized up to the 

stage that information belongs to. Figure 4 shows the complete list of stages, ten in all. 
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The first four stages (Empty through Instance) are involved in the initial construction and 

initialization of the system. Don’t worry about them right now. All of the information you 

will want to access during a simulation is associated with one of the later stages. Here is the 

information associated with each of the later stages: 

Time: At this stage, no derived information has yet been calculated. You can query the State 

for any of the state variables (t, y, and d), but nothing else. 

Position: At this stage, the positions of all bodies in Cartesian coordinates are known. 

Velocity: At this stage, the velocities of all bodies in Cartesian coordinates are known, along 

with the amount by which the constraints are violated.  

Dynamics: At this stage, the force acting on each body is known, along with the total 

kinetic and potential energy of the system. 

Acceleration: At this stage, the time derivatives of all continuous state variables are 

known, along with the values of all event trigger functions. 

 

 

 

 

 

 

 

 

1.  Topology 

2.  Model 

3.  Instance 

4.  Time 

5.  Position 

6.  Velocity 

7.  Dynamics 

S
ta

g
e
s


 

8.  Acceleration 

Figure 4. The organization of 

a computation into ordered 
stages. When a State is 
realized to a given stage, the 
cache information for that 
stage (shown in brown) is 
calculated and filled in. A 
change to a state variable at a 
given stage invalidates cache 
information at that stage and 

higher.  

 9.  Report 

0.  Empty 
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Report: A State is not normally realized to this stage during a simulation. It is available in 

case a System can calculate values that are not required for time integration, but might be 

needed by an event handler or for later analysis. That way, these values will only be 

calculated when they are actually needed. 

The State makes sure that all values in the realization cache are consistent with the current 

state variables. If you modify any state variable, the current stage will automatically “back 

up” to an earlier stage, invalidating cache entries from later stages so they can no longer be 

accessed. In particular: 

 Modifying t will bring the State back to Instance stage. 

 Modifying q will bring the State back to Time stage. 

 Modifying u will bring the State back to Position stage. 

 Modifying z will bring the State back to Velocity stage. 

 When a System defines a discrete state variable d, it specifies what stage the State 

should be reverted to when that variable is modified. This is chosen to ensure that 

modifying the variable will invalidate any cache entry that may depend on it. 

2.5 Events 

Now let’s look at event handling in more detail. As described earlier, an event is signaled by 

an event trigger function, e(d; t, y). When that function crosses through 0, an event is said to 

occur, and a handler function is invoked. 

In practice, this means that the value of the event trigger function is calculated at each time 

step. When it changes sign from the previous time step, the integrator knows that an event 

occurred at some point during the step. It then tries to identify exactly when the event 

occurred by generating interpolated States at various points in the middle of the step and 

evaluating the trigger function at each one. 

The result is a time window (tlow, thigh] within which the event is known to occur. We don’t 

know exactly when it occurred, only that it was somewhere within the window. You can 

control how large a window is acceptable. Asking for a smaller window will produce more 

accurate event localization, but also is slower. 



   The Simbody library stack 

 

15 

The event handler is then invoked and given a State, which reflects what the state of the 

system would have been at thigh if the event had not occurred. The event handler is free to 

modify this State in whatever way it wants. Once it returns, the time integration continues 

on, using the modified State as its starting point. 

An important special case is events that are defined to occur at a particular time that is 

known in advance. Of course, we can handle this case with the above mechanism, simply 

defining the event trigger function as e(d;t,y)=e(t)=t-tevent. But that is unnecessarily 

inefficient. We know in advance exactly when the event occurs, so there is no need to figure 

it out by repeated evaluations of the trigger function on a series of interpolated States!  

Simbody therefore provides a special purpose mechanism for events of this sort. They are 

known as scheduled events, in contrast to triggered events which are determined based on 

an event trigger function. 

Another important special case is events that do not actually modify the State. For example, 

perhaps you want to save a copy of the current State to disk at regular intervals for later 

analysis. Or you might want to monitor a particular quantity and record the largest value it 

ever takes on over the course of the simulation. In some cases, an integrator can save work if 

it knows in advance that an event handler is only going to examine the State but not modify 

it. Simbody therefore provides a separate mechanism for implementing event handlers of 

this sort. They are known as event reporters. 

Like most other aspects of a System, events are defined by Subsystems, but you don’t want to 

have to write an entire Subsystem just to create a single event handler or event reporter. The 

default Subsystem therefore provides an extensible mechanism to define new events. You 

simply create a subclass of one of the following classes: TriggeredEventHandler, 

ScheduledEventHandler, TriggeredEventReporter, or ScheduledEventReporter. You then 

add it to the default Subsystem by calling addEventHandler() or addEventReporter() on it, 

and it takes care of everything else for you. We will see examples of doing this in a later 

chapter. 

2.6 The Simbody library stack 

Simbody consists of a set of modules that form a stack. Each module depends on those that 

come before (above) it, but not the ones after (below) it. 
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Module Function 

LAPACK Provides routines for high performance linear algebra 

SimTKcommon Contains many of the basic classes for representing 

systems, states, vectors, matrices, event handlers, etc. 

SimTKmath Provides a variety of high level numerical tools for 

integration, differentiation, and optimization 

Simbody Provides algorithms and data structures for modeling 

multibody systems in internal coordinates 

Molmodel (optional) Provides tools for modeling biological macromolecules 

such as proteins and nucleic acids as Simbody internal 

coordinate models; can use OpenMM for acceleration. 

 

(If we were including OpenMM here, it would be at the same level as LAPACK; both are 

hardware-accelerated computational tools independent of any other SimTK software. If we 

were including the OpenSim API, it would be at the same level as Molmodel.) 

In addition to these libraries, Simbody comes with a visualization and user-interaction tool 

called the Simbody Visualizer. That is a separate executable program 

(simbody-visualizer) installed in the bin subdirectory of the installation. When you use 

Simbody’s Visualizer class, an attempt is made to launch that executable. However, Simbody 

can be used without the Visualizer if you have your own methods for looking at the results. 

For now, we will not worry too much about the boundaries between the different modules. 

The Simbody installation includes all the lower levels; only Molmodel is installed separately. 

You can access all of them from your code by including a single header file: Molmodel.h if 

you are doing a biomolecular simulation, Simbody.h otherwise. 



 

 

3 Installing Simbody and 

Molmodel 

Please see the README.md file displayed at https://github.com/simbody/simbody for up-to-

date instructions for Simbody. 

Most users will not need Molmodel. If you are interested in it, please post to the user forum 

at https://simtk.org/home/molmodel or https://simtk.org/home/rnatoolbox. 

  

4 Simple Example: A Double 

Pendulum 

It’s now time to look at our first example. Here we’ll introduce features as we go. In the next 

chapter we’ll step back and talk more about the Simbody API in general. 

4.1 A First Example 

The following program creates a system representing a double pendulum: one pendulum 

attached to the end of a second one. It simulates the behavior of this system over a period of 

50 seconds, and displays a movie of it. 

https://github.com/simbody/simbody
https://simtk.org/home/molmodel
https://simtk.org/home/rnatoolbox
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#include "Simbody.h" 

using namespace SimTK; 

int main() { 

  try { 

  

    // Create the system. 

    MultibodySystem system; 

    SimbodyMatterSubsystem matter(system); 

    GeneralForceSubsystem forces(system); 

    Force::UniformGravity gravity(forces, matter, Vec3(0, -9.8, 0)); 

    Body::Rigid pendulumBody(MassProperties(1.0, Vec3(0), Inertia(1))); 

    pendulumBody.addDecoration(Transform(), DecorativeSphere(0.1)); 

    MobilizedBody::Pin pendulum1(matter.Ground(), Transform(Vec3(0)), 

            pendulumBody, Transform(Vec3(0, 1, 0))); 

    MobilizedBody::Pin pendulum2(pendulum1, Transform(Vec3(0)), 

            pendulumBody, Transform(Vec3(0, 1, 0))); 

 

    // Set up visualization. 

    Visualizer viz(system); 

    system.addEventReporter(new Visualizer::Reporter(viz, 0.01)); 

     

    // Initialize the system and state. 

    system.realizeTopology();  

    State state = system.getDefaultState(); 

    pendulum2.setRate(state, 5.0);  

     

    // Simulate it. 

    RungeKuttaMersonIntegrator integ(system); 

    TimeStepper ts(system, integ); 

    ts.initialize(state); 

    ts.stepTo(50.0); 

 

  } catch (const std::exception& e) { 

    std::cout << “Error: “ << e.what() << std::endl; 

    return 1; 

  } 

} 

Before you can compile and run this program, you need to have Simbody installed (see 

Chapter 3). The installation directory has subdirectories “include”, “lib”, and “bin”. Make 

sure the “include” directory is part of your compiler’s include path, and the “lib” directory is 

available to the linker. At runtime the shared library directory (lib for Mac and Linux, bin for 

Windows) must be on the appropriate “path” environment variable. Exactly how you do this 

will depend on the compiler and operating system you are using. 
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If everything is working correctly, you should see a window that looks something like this, 

showing an animation of the pendulum swinging: 

 

Let’s go through the program line by line and see how it works. It begins with an include 

statement: 

#include "Simbody.h" 

 

That gets us all the declarations we need to write a Simbody-using program. 

Next we import the SimTK namespace, which includes nearly all of the symbols used by 

SimTK: 

using namespace SimTK; 

That’s optional, but it saves having to preface every symbol with “SimTK::”. 
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The try/catch block should always be included because most Simbody error conditions are 

returned by throwing exceptions. We don’t expect any errors here but this is a good habit to 

get into and can save a lot of trouble. 

Now we create our System and a pair of Subsystems: 

MultibodySystem system; 

SimbodyMatterSubsystem matter(system); 

GeneralForceSubsystem forces(system); 

 

MultibodySystem is a subclass of System. It defines the functionality for working with 

general multibody systems. In most cases, you will use a MultibodySystem or one of its 

subclasses in your simulations. 

SimbodyMatterSubsystem is the Subsystem that will define all the bodies in the system. It is 

a modular Subsystem, to which you can add whatever bodies you want. A MultibodySystem 

must always have a SimbodyMatterSubsystem. Notice that we do not explicitly add the 

Subsystem to the System. Instead, the constructor takes a reference to the System, and it 

adds itself. 

GeneralForceSubsystem is a Subsystem that can be used to add a variety of forces to a 

system. Much like SimbodyMatterSubsystem, it is designed to be modular; you can add 

whatever forces you want to it. In the next line, we add a uniform gravitational force of 9.8 

m/s2 in the negative y direction: 

Force::UniformGravity gravity(forces, matter, Vec3(0, -9.8, 0)); 

  

The Force class has many subclasses representing a variety of common forces: springs, 

dampers, constant forces, etc. It also has a subclass called Force::Custom, which you can use 

to define completely new forces. 

To understand the next few lines, we need to consider two important classes: Body and 

MobilizedBody. The Body class represents the physical properties of a body, such as its mass 

and moment of inertia. Body::Rigid is a subclass that represents a generic rigid body. The 

MobilizedBody class combines the body’s physical properties (represented by a Body object) 

with a set of mobilities—that is, the set of state variables describing how the body is allowed 

to move. It has many different subclasses defining a wide variety of types of joints. 

We begin by creating a Body to describe the physical properties of our pendulum: 

Body::Rigid pendulumBody(MassProperties(1.0, Vec3(0), Inertia(1))); 
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We specify that it has a mass of  1 kg (the first argument),  the center of mass is at the body’s 

origin (the second argument), and a moment of inertia of 1 kg·m2 around all three axes (the 

third argument). 

A Body object can also define how the body should be drawn in graphical displays. This has 

no effect on the simulation, so it is completely optional. Since we want to show an animation 

of the pendulum, we add a decoration to the Body: a sphere of radius 0.1. 

pendulumBody.addDecoration(Transform(), DecorativeSphere(0.1)); 

So far we have not actually added any bodies to our System. We have simply created a Body 

instance that defines a certain set of physical and display properties. The next two lines 

actually add bodies to the System: 

MobilizedBody::Pin pendulum1(matter.Ground(), Transform(Vec3(0)), 

            pendulumBody, Transform(Vec3(0, 1, 0))); 

MobilizedBody::Pin pendulum2(pendulum1, Transform(Vec3(0)), 

            pendulumBody, Transform(Vec3(0, 1, 0))); 

The MobilizedBody::Pin constructor adds a new body to the System by creating a pin joint 

connecting it to a body that is already in the System. Simbody uses the term mobilizer for 

any joint that connects a body to its parent in a multibody tree, so a MobilizedBody always 

contains a Body as described above, and its mobilizer, in this case a Pin. A Pin mobilizer has 

one generalized coordinate and one generalized speed, which allow it to rotate around a 

single axis. Our pendulum consists of two of these linked to each other. 

The first constructor argument is the MobilizedBody’s parent; that is, the already-in-System 

MobilizedBody relative to which its position is defined. Every SimbodyMatterSubsystem has 

a Ground body which is fixed at the origin, and forms the root of the multibody tree. We 

specify Ground as the parent for pendulum1, and then specify pendulum1 as the parent for 

pendulum2. So the parent body is always closer to ground than is the child body we’re 

adding, and every body in the System has a unique parent body. 

The third argument is a Body object. Notice that we specify the same Body for both 

MobilizedBodies. Remember, a Body is simply a description of a set of physical properties. If 

several MobilizedBodies have identical properties, it is fine to use the same Body for all of 

them but they aren’t shared; each MobilizedBody gets its own copy of the Body. 

Now let’s look at the second and fourth arguments, which are both Transform objects. These 

are used to specify the location and orientation of a coordinate frame fixed on each of the 
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bodies. The mobilizer we’re using will connect those two frames, permitting some motion 

between them that depends on the kind of joint. Let’s look at this more precisely so we can 

say exactly how the Transforms define the pin joint mobilizer. 

When defining a MobilizedBody, think of the parent as though it were temporarily fixed to 

Ground and the new body as though it does all the moving. With that in mind, we’ll call the 

frame on the parent the “fixed” frame F, and the frame on the child the “moving” frame M. 

We’ll call the parent’s own body frame P, and the new (child) body’s frame B. So the second 

argument above locates the F frame with respect to the parent body’s frame P, and the fourth 

locates M with respect to the child’s body frame B. You can see these frames in Figure 5, with 

F in blue and M in red. 

 

Now we can describe precisely what the Pin mobilizer does: it permits body B to move only 

in a manner that keeps the F and M frame origins in the same place, and the z axes of those 

frames lined up. The two Transforms tell us where F and M are positioned on their bodies. 

In our case, we specified a vector of length 0 for both the fixed frames, so we use the parent 

bodies’ origins as the fixed point. For both the moving frames, we specified a vector of length 

1 pointing in the y (up) direction, so when both joints are in their neutral positions (that is, 

when q=[0, 0]), the pendulum hangs straight down. 

PXF 

FXM 

PXB 

Parent body 
P 

New mobilized 
body B 

F 

B 

BXM 

P 

M 

Figure 5. Transforms PXF and BXM are 

given as part of a MobilizedBody 
constructor. 
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By convention, we denote a transform with the letter X (not T as you might expect). Then we 

use two superscripts to denote the “reference” and “target” frames, with the reference frame 

on the left: R TX . A transform tells us how the target frame is positioned with respect to the 

reference frame. Figure 5 shows the four transforms involved in a MobilizedBody. The 

“fixed” transform 
P FX  and the “moving” transform 

B MX  are given in the constructor and 

don’t change with time. The mobilizer transform 
F MX  depends on this joint’s generalized 

coordinates and tells us where the M frame is currently in relation to the F frame. These are 

combined to create the body transform 
P BX  which relates the position and orientation of 

the body to that of its parent:   

P B P F F M M BX X X X   ,  where 1
( )

M B B M
X X


 . 

Note that with this notation composition of transforms always requires that consecutive 

superscripts match; if they don’t, you are doing something wrong! 

Our System is almost complete at this point, but there’s one more thing we want to add, a 

way to visualize the simulation: 

    Visualizer viz(system); 

    system.addEventReporter(new Visualizer::Reporter(viz, 0.01)); 

The first line creates a Visualizer for our System. The second adds an event reporter that will 

invoke the Visualizer at regular intervals during the simulation. You will recall from the 

previous section that an event reporter is a special type of event handler that does not 

actually modify the state of the system when it is called. It is there just to observe and report. 

Visualizer::Reporter uses a Visualizer to display a movie of the simulation. We ask it to 

draw a new frame every 0.01 seconds. That’s measured in simulation time, not real time. 

Depending on how demanding your simulation, how fast your computer is, and whether you 

are running in debug or optimized mode, one second of simulation time may take more or 

less than one second to calculate and display. The Visualizer will take care of controlling the 

real time rate at which the frames are displayed; by default it displays 30 frames per second. 

In this case our simulation will display in slow motion since 30 frames at 0.01 seconds per is 

0.3 seconds of simulated time in a second of real time.  A Simbody Visualizer has many 

options for controlling what gets displayed and when, and can also be used to interact with 

the user during the simulation. 

You can find out a lot more about any of these classes by looking in the API reference 

documentation, posted on the Simbody project’s Documentation page and also available in 
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the doc subdirectory of your Simbody installation (SimbodyAPI.html). Type the name of a 

class into the search box or browse the class list. 

We’re all done building our System. Now we need to prepare it for simulation: 

system.realizeTopology(); 

 

This function informs Simbody that you are done constructing the System, and performs lots 

of initialization. Don’t worry about the details right now; they usually only matter if you are 

writing a new Subsystem class. For the moment, you just need to remember that after you 

build a System, you need to call realizeTopology() on it. If you then make any changes to the 

System (such as adding another event handler), you need to call realizeTopology() again, and 

any State objects you previously created will no longer be valid. 

Now we need to get a State for the System. Every System provides a default State which has 

been initialized to have the right set of state variables and cache entries for the System. The 

default State is created when realizeTopology() is called. The easiest way to create a new 

State is simply to make a copy of the default State. That is what we do: 

State state = system.getDefaultState(); 

 

The default State has all state variables initialized to 0. We could use that as the starting 

point for our simulation, but it would make for a very dull simulation. The pendulum would 

simply hang there and not do anything. We need to give it some energy to make it move. We 

do this by modifying the State to give pendulum2 an initial angular velocity of 5 radians/sec: 

pendulum2.setRate(state, 5.0); 

  

The setRate() method is specific to the Pin mobilizer, for which “the rate” is unambiguous 

since there is only one degree of freedom and it is angular. (Recall that pendulum2 is a 

MobilizedBody::Pin.) We now have a System to simulate, and an initial State to begin the 

simulation from. It’s time to do some simulating! 

RungeKuttaMersonIntegrator integ(system); 

TimeStepper ts(system, integ); 

ts.initialize(state); 

 

To understand these lines, we need to discuss two important classes: Integrator and 

TimeStepper. An Integrator is an object that knows how to advance the continuous state 

variables y by integrating the equations of motion. There are, of course, lots of different 
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algorithms for doing that. The best algorithm in a particular case depends on lots of factors: 

how smooth the system’s energy landscape is, what level of accuracy you want, whether the 

equations are numerically stiff, etc. SimTK therefore provides a choice of different Integrator 

subclasses, each implementing a different algorithm. In this case, we have chosen a 

RungeKuttaMersonIntegrator, which is a good choice for most mechanical systems. We 

could also, for example, have used VerletIntegrator instead to use the velocity Verlet 

algorithm; you would use it identically to the RungeKuttaMersonIntegrator shown here. 

A TimeStepper takes care of the discrete part of a simulation. It repeatedly invokes the 

Integrator to evolve the equations of motion, calls event handlers when events occur, and 

notifies the Integrator of any changes made by the event handlers. It takes care of most of 

the details of running a simulation for you. All you need to do is tell it what Integrator to use, 

and it does the rest. 

Now we are all ready to run the simulation. Here is how we do it: 

ts.stepTo(50.0); 

 

That’s it!  Just tell the TimeStepper what time to advance the simulation to, and it does it. 

Before we finish with this example, there is one point worth remarking on. Throughout the 

discussion, we have assumed that all quantities were measured in SI units: seconds for time, 

kg for mass, etc. You may have wondered how Simbody knew that. The answer is simple: it 

didn’t. You are free to use whatever units you want. All that matters is that you use a single, 

consistent set of units for all quantities. For this example, we assumed SI units. In a later 

chapter, we will see an example that uses a different set of units. The only absolute 

requirement is that Newton’s 2nd law force=mass*acceleration must hold in whatever unit 

system you choose. 

4.2 A Scheduled Event Reporter 

Now let’s expand on the previous example. We are going to create a new event reporter. Its 

job will be to print out the position of the end of the pendulum at regular intervals during 

the simulation. Since the reporting times are fixed in advance, not determined by the 

behavior of the system, this is a scheduled event reporter. 

Here is the code which implements the event reporter: 

class PositionReporter : public PeriodicEventReporter { 
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public: 

    PositionReporter(const MultibodySystem& system, const MobilizedBody& mobod, 

                     Real reportInterval)  

    :   PeriodicEventReporter(reportInterval), system(system), mobod(mobod) {} 

    void handleEvent(const State& state) const { 

        system.realize(state, Stage::Position); 

        Vec3 pos = mobod.getBodyOriginLocation(state); 

        std::cout<<state.getTime()<<"\t"<<pos[0]<<"\t"<<pos[1]<<std::endl; 

    } 

private: 

    const MultibodySystem& system; 

    const MobilizedBody&   mobod; 

}; 

 

We can add this event reporter to our System with the following line: 

system.addEventReporter(new PositionReporter(system, pendulum2, 0.1)); 

 

Now when you run the program, it prints out the current time and the X and Y coordinates 

of the pendulum every 0.1 seconds. Here are the first few lines of the output: 

0 0 -2 

0.1 0.481219 -1.88155 

0.2 0.870604 -1.58657 

0.3 1.13856 -1.22146 

 

We output the values as tab delimited text, which makes it easy to load into other programs 

for analysis. For example, here is an XY plot which traces out the pendulum’s trajectory over 

the course of the simulation: 
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Let’s go through the code and see exactly what it is doing. First, we declare our event 

reporter to be a subclass of PeriodicEventReporter: 

class PositionReporter : public PeriodicEventReporter { 

 

PeriodicEventReporter is a subclass of ScheduledEventReporter which is used for the (very 

common) case of a reporter that should be called at fixed intervals throughout the 

simulation. We could have subclassed ScheduledEventReporter directly instead; we just 

would have needed to implement one additional method. 

Now look at the constructor: 

PositionReporter(const MultibodySystem& system, const MobilizedBody& mobod, 

                 Real reportInterval)  

:   PeriodicEventReporter(reportInterval), system(system), mobod(mobod) {} 

 

This is all very simple. We just store references to the System and MobilizedBody we will be 

reporting on, and pass the reporting interval along to the superclass. 

Notice that the reporting interval is of type “Real.” This is the type used by SimTK for nearly 

all floating point values. The Simbody release always defines Real as double. 

All the really interesting things happen in the handleEvent() method. It is called every time 

an event occurs (that is, at the time intervals specified to the constructor), and receives a 

reference to the current State. 
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We want to print out the position of the pendulum in Cartesian coordinates. That 

information is only available if the State has been realized to at least Position stage, so the 

very first thing we do is ask the System to realize it: 

system.realize(state, Stage::Position); 

  

Now we can ask for the location of the MobilizedBody:  

Vec3 pos = mobod.getBodyOriginLocation(state); 

  

Notice that we do not ask the State for this information directly. Instead, we pass the State to 

the MobilizedBody and ask it for the location. This is a common pattern. All the State object 

knows about is state variables. It does not understand that those variables represent the 

rotation angles of a pendulum, and that the pendulum is made up of bodies with positions in 

Cartesian space. It is the System that knows these things, so you need to get the System (or 

in this case, the MobilizedBody which is a part of the System) to interpret the State and 

extract the desired information. 

Finally, we print out the desired information: 

std::cout<<state.getTime()<<"\t"<<pos[0]<<"\t"<<pos[1]<<std::endl; 

 

We do not bother to print the z component of the position because we have constructed the 

pendulum to move entirely in the xy plane. 

4.3 A Triggered Event Reporter 

Suppose we are especially interested in knowing how high up the pendulum gets on each 

swing. We can’t rely on a scheduled event reporter to tell us this: the highest point on the 

swing probably won’t exactly correspond to a reporting time, so we will often miss it. We 

really want to be guaranteed that a report will occur at exactly the moment when the 

pendulum’s height reaches its local maximum. This calls for a triggered event reporter. The 

event times are determined by the behavior of the System, not scheduled in advance. 

The first thing we need to do is choose an event trigger function. This must be a continuous 

function that crosses through zero at the moment when an event should occur. Fortunately, 

there is an easy choice we can use: the y component of the body’s velocity. This has exactly 

the properties we need. There is a catch, though. We only care about the highest point on the 
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swing, not the lowest point. The velocity becomes zero at local minima as well as maxima, 

but we don’t want the event reporter to be called at those points. 

One option would be to have handleEvent() filter out the unwanted events. Each time it was 

called, it could calculate the derivative of the event function (in this case, the body’s 

acceleration), and use that to decide whether to ignore the event. But there’s a better 

solution: Simbody can do this filtering for you. You simply tell it which zero crossings you 

are interested in: rising transitions, falling transitions, or both. 

Here is the code for the event reporter. 

class PositionReporter : public TriggeredEventReporter { 

public: 

    PositionReporter(const MultibodySystem& system, const MobilizedBody& mobod) 

    :   TriggeredEventReporter(Stage::Velocity), system(system), mobod(mobod) { 

        getTriggerInfo().setTriggerOnRisingSignTransition(false); 

    } 

    Real getValue(const State& state) const { 

        Vec3 vel = mobod.getBodyOriginVelocity(state); 

        return vel[1]; // y coordinate 

    } 

    void handleEvent(const State& state) const { 

        system.realize(state, Stage::Position); 

        Vec3 pos = mobod.getBodyOriginLocation(state); 

        std::cout<<state.getTime()<<"\t"<<pos[0]<<"\t"<<pos[1]<<std::endl; 

    } 

private: 

    const MultibodySystem& system; 

    const MobilizedBody&   mobod; 

}; 

 

This time, we subclass TriggeredEventReporter, which should come as no surprise. Take a 

look at the constructor: 

PositionReporter(const MultibodySystem& system, const MobilizedBody& mobod)  

:   TriggeredEventReporter(Stage::Velocity), system(system), mobod(mobod) { 

 

Notice the value we pass to the superclass constructor: Stage::Velocity. Event trigger 

functions are calculated as part of the process of realizing a State. Each event handler must 

specify what stage its trigger function should be calculated after. Since our function depends 

on information that is available at Velocity stage, that is the stage we specify.  

The constructor also contains the following line: 



An Event Handler 

 

30 

getTriggerInfo().setTriggerOnRisingSignTransition(false); 

  

This tells Simbody that events should not occur on rising sign transitions (when the trigger 

function increases from negative to positive). The default is to trigger on any sign transition; 

we only care about falling transitions. 

Now look at the getValue() method, which returns the value of the event trigger function: 

Real getValue(const State& state) const { 

    Vec3 vel = mobod.getBodyOriginVelocity(state); 

    return vel[1]; // y coordinate 

} 

 

Although this looks straightforward, you might notice something odd about it. We access the 

body’s velocity, which is only available once the State has been realized to Velocity stage. 

Shouldn’t we therefore call system.realize()? 

The answer is no. Remember, this function is called as part of realizing the State. We are 

already in the middle of a call to realize(), and all of the Velocity stage cache entries have 

already been calculated. In fact, if we inserted a call to realize() here asking to realize the 

state to Velocity stage, the result would be an infinite recursion! 

The question is a good one, though, and this is an unusual case. At any time other than in 

the middle of realizing the State, there is no harm in sticking in an extra call to realize(). If 

the State has already been realized to the specified stage, it will simply return without doing 

anything. 

Conversely, if you forget to realize the State and then ask for information that is not yet 

available, it will simply throw an exception. This will usually cause the simulation to 

terminate, but at least you discover your mistake right away. This scheme ensures that 

expensive calculations are done only by explicit request rather than as hidden side effects 

that may have been unintended. 

4.4 An Event Handler 

So far, we have looked at event reporters: event handlers that can only observe the State, not 

modify it. Now let’s create an event handler that actually modifies the State. Suppose that 

half way through the simulation, we want to briefly apply a brake to the pendulum that 

decreases its angular velocity. Here is the code for an event handler that does this. 

class VelocityReducer : public ScheduledEventHandler { 
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public: 

    VelocityReducer() { 

    } 

    Real getNextEventTime(const State&, bool includeCurrentTime) const { 

        return 25.0; 

    } 

    void handleEvent(State& state, Real accuracy, bool& shouldTerminate) const { 

        state.updU() *= 0.2; 

    } 

}; 

 

We add it to the System with the following line: 

system.addEventHandler(new VelocityReducer()); 

 

We subclass ScheduledEventHandler. As you would expect, there are also classes called 

PeriodicEventHandler and TriggeredEventHandler. All of these classes are nearly identical 

to the corresponding event reporter classes. The only difference is the signature of 

handleEvent(). 

ScheduledEventHandler requires us to provide a method that returns the time of the next 

event: 

Real getNextEventTime(const State&, bool includeCurrentTime) const { 

    return 25.0; 

} 

 

Since we only want the event handler to be called once, we just return a hardcoded value. In 

general, though, the event time could be calculated based on the current State. For example, 

PeriodicEventHandler looks at the current time and uses that to determine the next event 

time. 

Now look at the signature of handleEvent(): 

void handleEvent(State& state, Real accuracy, bool& shouldTerminate) const { 

 

That’s a little more complicated than for an event reporter.  The first thing to notice is that 

the State is no longer const. As promised, we are now permitted to modify it. 

The next argument conveys the current integration accuracy requirement to the event 

handler. The event handler is supposed to reflect some physical process. Any calculations it 

does are an intrinsic part of the simulation, and the State it produces is part of the simulated 

trajectory. The user may have definite requirements for the accuracy of the trajectory, and 
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the event handler is expected to honor them if it performs any approximate computations. 

You can ignore this argument in the common case that your event handler does a 

(numerically) exact computation as we’re going to do here. If the resulting State is calculated 

in an approximate way, the error in it should be less than this value. If the System includes 

any constraints, the error in the constraint functions should be less than it. 

A State may also provide weights for the individual state variables and constraint functions. 

Advanced event handlers should respect those weightings; we won’t cover that here but you 

can look in the Doxygen documentation for the State API. See for example the 

getUWeights() method. 

Finally, there is an argument which is used for output: shouldTerminate. If you want the 

time stepper to stop the simulation as a result of this event, set that argument to true. It will 

have been set to false before the call so you don’t need to set it to anything if you just want 

the simulation to continue after the event has been handled. 

The actual implementation of this method is quite simple: 

state.updU() *= 0.2; 

 

updU() returns a mutable reference to the State’s u vector, which we multiply by 0.2. There 

is also a method called getU(), which returns a const reference to it. This naming convention 

is used frequently throughout SimTK: methods that return a const reference begin with 

“get”, and methods that return a non-const reference begin with “upd”. 

4.5 Constraints 

Working in internal coordinates greatly reduces the number of constraints needed for most 

systems, but it often cannot eliminate them altogether. Fortunately, Simbody makes it very 

easy to add constraints to your System. (It is worth emphasizing here that mobilizers—

internal coordinate joints—are not constraints in Simbody.) 

Each constraint is represented by an object of the Constraint class. Subclasses of Constraint 

represent different kinds of constraints. Simbody provides a collection of Constraint 

subclasses for various common types of constraints: that the distance between two bodies 

must remain fixed, that a body can only move in a particular plane, etc. 

As an example, let’s add a constraint forcing the end of our pendulum to remain on the 

vertical line through the origin. That is, the body in the middle of the pendulum will be free 
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to swing back and forth, but the body at the end will only be able to move up and down. 

Adding a Constraint works exactly like adding a MobilizedBody: 

Constraint::PointOnLine(matter.Ground(), UnitVec3(0, 1, 0), Vec3(0), pendulum2, 

    Vec3(0)); 

 

Constraint::PointOnLine is a subclass of Constraint that implements constraints of this sort: 

a point on one body is only allowed to move along a line defined by a different body. The first 

three arguments specify the line: it is defined in the Ground body’s reference frame, it points 

in the y-axis direction (0, 1, 0), and it passes through the origin. The last two arguments 

specify the point which must remain on the line: it is at the origin of pendulum2’s reference 

frame. 

With this single additional line, the behavior of the pendulum changes dramatically. Instead 

of moving chaotically, the first mass simply swings back and forth like an ordinary 

pendulum, while the second one slides up and down in unison with it. 
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5 Some Simbody Basics 
Now that you’ve seen an example of using Simbody, we’ll step back and talk in more detail 

about some of the basic conventions and low-level features of the Simbody API.  Then in the 

next chapter we’ll return to a more complicated example. 

Simbody uses basic numerical classes from the Simmatrix package, which provides high-

performance, Matlab-like functionality accessible from our C++ API. We will only discuss 

the basics here; much more information is available in the API Reference documentation. 

There is also a separate document describing the design and implementation of Simmatrix. 

See the Simbody home page https://simtk.org/home/simbody, Documents page.  

5.1 Naming Conventions 

All symbol names generated by Simbody are in the SimTK namespace. In most cases you will 

want to include the following line at the top of your source files so that you do not have to 

repeat the namespace for every SimTK symbol: 

using namespace SimTK; 

Alternatively, you can introduce symbols selectively with statements like 

using SimTK::Vec3; 

Or you can prefix the symbols with SimTK:: when you use them.  There are a few symbols, 

typically pre-processor macros, that cannot be put in a C++ namespace; those symbols begin 

with the six-character string “SimTK_” instead. 

Simbody uses mixedUpperAndLowerCase names with a capital letter used to begin a new 

word. Class names and constants begin with a CapitalLetter.  Method (function) names and 

variable names begin with a lowerCaseLetter. Pre-processor macros, except for the initial 

SimTK prefix, are written in ALL_CAPS with underscores separating words. 

5.2 Numbers and Constants in SimTK 

Simbody supports both float (single) and double precision, and is compiled with one of those 

as its default, which is then referred to as type Real. So SimTK::Real is simply a typedef 

to either the built-in float or double type. The default is double precision and we 

https://simtk.org/home/simbody
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recommend you leave it that way, so for our purposes here the SimTK::Real type is always 

defined 

typedef double Real; 

Similarly, Simbody has a type SimTK::Complex which is interchangeable here with the 

C++ built-in type std::complex<double>. You probably will not need to use complex 

numbers often with Simbody, but they are available if you need them and supported for all 

vector and matrix operations. 

Simbody pre-defines a number of constants to machine precision; we recommend you use 

those rather than defining your own. The most useful ones are: Pi, E (e), Infinity, NaN 

(not-a-number), and I (i= 1 ). Note that the first letter of constants are capitalized and in 

the SimTK namespace – these are not preprocessor macros; they have types and addresses. 

5.3 Vectors and Matrices 

Simbody has two different sets of classes for vector and matrix objects, to deal with small 

objects where overhead must be minimized, and with large objects where computation 

strategy and memory access must be optimized. You have seen types Vec3 (a 3-vector) and 

Vector (a variable-length vector) in the previous example. Here we will discuss those in 

more detail. If you want to know more about the design goals and implementation of these 

classes, see the Simmatrix document here: https://simtk.org/home/simbody, Documents 

tab. 

First, there are classes to represent small, fixed size vectors and matrices with zero runtime 

overhead: Vec for column vectors, and Mat for matrices1.  These classes are templatized 

based on size and element type.  Synonyms (typedefs) are defined for common 

combinations; for example, Vec3 is a synonym for Vec<3,Real>, while Mat22 is a 

synonym for Mat<2,2,Real>.  You can also create other combinations, such as 

Mat<2,10,Real> or Vec<4,std::complex<float>>. You can also nest these objects – 

for example, the type Vec<2,Vec3>, called a spatial vector, is useful for combining 

rotational and translational quantities into a single object representing a spatial velocity or 

                                                         

1 There is also a Row type that does not normally appear in user programs. 

https://simtk.org/home/simbody
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spatial force. However, the size must always be determinable at compile time. The in-

memory representation of these small objects is minimal: only the data elements are stored. 

Second, there are classes to represent large vectors and matrices whose sizes are determined 

at runtime: Vector_ for column vectors and Matrix_ for matrices2.  These classes are 

templatized based on element type. Types Vector and Matrix are synonyms for 

Vector_<Real> and Matrix_<Real>.  Again, you can use other element types.  In fact, 

the element type can even be one of the fixed-size vector or matrix objects.  For example, 

Vector_<Vec3> is a vector, where each element is itself a three-component vector. 

However, it is not permissible to use the variable-size Vector_ or Matrix_ objects as 

element types. The in-memory representation of these objects includes, in addition to the 

data, an opaque descriptor containing the length and information on how the data is laid 

out; the declared objects actually consist only of a pointer (essentially a void*) to the 

descriptors. This has many advantages for implementation and binary compatibility, but 

makes it difficult to look through these objects in a debugger as you can with the small Vec 

and Mat classes. 

Here are some sample declarations: 

 Vec<3>           v;   // a 3-vector of Reals 

 Vec3             w;   // same thing, using abbr. 

 Vector           b,x; // vectors of doubles 

 Matrix           M;   // mxn matrix of doubles 

 Matrix_<Complex> C;   // mxn matrix of complex<double> 

 Vector_<Vec3>    v3;  // big vector of 3-vecs 

 

 // This type is a 2-element vector whose elements 

 // are 3-vectors. Memory layout and computational 

 // efficiency are identical to Vec<6>. 

 typedef Vec<2,Vec3> SpatialVec; 

5.3.1 Operators 

All of these classes support standard mathematical operators like +, -, *, / and C-style 

assignment operators like +=, -=, *=, /=.  In addition, Simbody overloads the ~ unary 

operator to indicate transpose (or more precisely, Hermitian conjugate). That is, for any 

vector or matrix x, Simbody’s “~x” has the same meaning as Matlab’s “x’”.  For Vec3 there 

is also a cross product operator % available so that you can write compact expressions like 

                                                         

2 Again with a normally-hidden RowVector_ type. 
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Vec3 w, r;    // defined somewhere 

Vec3 a = w % (w % r);  // a=w x (w x r) 

 

Like Matlab, Simbody requires strict shape conformance for vector and matrix arguments. 

So for Vec3 v and w, ~v*w is a dot product (scalar=row*vector) while v*~w is an outer 

product (matrix=vector*row), while v*w fails to compile because the arguments are not 

conforming. Scalar multiplication acts as expected. Global functions dot(), cross(), and 

outer() are available for those who prefer them to using the operators. 

There also are versions of many standard math functions that operate on vectors and 

matrices: sin(), exp(), sqrt(), etc. and additional functions abs(), min(), max(), 

sort(), mean(), median().  These allow many calculations to be written in a very concise 

way. 

5.3.2 Construction and assignment 

All vector and matrix types define a default constructor, that is, a constructor with no 

arguments. In Debug mode, the default constructor initializes all elements to NaN. In Release 

mode, all elements are left uninitialized. 

Constructors are also available for initializing data elements from individual element values, 

or by copying compatible objects. Initialization values can be provided in the constructor or 

via a pointer (or C array) to values of the appropriate type. Assignment operators are 

available for copying whole objects, and for setting single elements, subvectors and 

submatrices. 

One convention followed by Simbody, which is different from that of most similar systems, is 

the treatment of scalar assignment. We follow this convention: (1) when a scalar s is assigned 

to a vector, every element of the vector is set to s (this is the typical convention), and (2) 

when a scalar s is assigned to a matrix, the diagonal elements of the matrix are set to s while 

the off-diagonals are set to zero. Examples: 

 Vec3   v;  

 Mat22  m;  

 

 Vec3 v(0);  // v=(0,0,0) 

 v=0;        //     " 

 v=3;        // v=(3,3,3) 

 Mat33 m(0); // m=( 0,0 ) zero 

 m=0         //   ( 0,0 )  
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 Mat33 m(1); // m=( 1,0 ) identity 

 m=1;        //   ( 0,1 )  

 Vector b(10);     // initial size 10 doubles  

 Matrix M(20,10);  // initial size 20x10 

 b=0; // b=10 zeroes  

 M=1; // M=0, except M(i,i)=1, 0<=i<10 

 

This convention is especially apt for matrices, because the matrix resulting from such a 

scalar assignment “acts like” that scalar. That is, if you multiply by this matrix the result is 

identical to a scalar multiply by the original scalar. Two important cases enabled by this 

convention are: (1) setting a matrix to the scalar “1” results in the multiplicative identity 

matrix of that shape, and (2) setting a matrix to the scalar “0” results in the additive identity 

matrix of that shape. In general, in any operation involving a scalar s and a Matrix or Mat, 

the scalar is treated as if it were a conforming matrix whose main diagonal consists of all s’s 

with all other elements zero. So Matrix m += s will result in s being added to m’s diagonal, 

which is what would happen if s were replaced by diag(s) of the same dimension as m. 

m-=1 thus subtracts an identity matrix from m, without touching any of the off-diagonal 

elements. Note that for multiply and divide this convention yields the ordinary scalar 

multiply and divide operations: m*s (=m*diag(s)) multiplies every element of m by s, while 

m/s (=m* (1/s)) divides every element of m by s. 

5.3.3 Indexing 

Simbody provides 0-based indexing using the [] operator. If a Matrix is modifiable (non-

const), then the indexed element can be modified and that change affects the contents of the 

object. The [] operator applied to a Matrix returns a row (specifically, a RowVector 

object), which may in turn be indexed to obtain an element in C style. Simbody also permits 

indexing using round brackets () yielding identical results to [] for Vector but selecting a 

column (Vector) rather than a row when applied to a Matrix. A two-argument round 

bracket operator accesses a Matrix element. 

    Matrix m; Vector v; … 

    v[i] // ref to ith element of v, 0-based 

    v(i)  //   same 

    m[i][j] // ref to i,jth element of m, 0-based 

    m(i,j)  //   same, but faster 

    m[i]  // ref to ith row of m, 0-based 

    m(j)  // ref to jth column of m, 0-based 
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For the variable-size Matrix and Vector classes only, there are also operators for selecting 

sub-vectors and sub-matrices. Like the indexing operators, these return references into the 

original object, not copies. Sub-matrices are thus “lvalues” (in C terminology), meaning that 

they can appear on the left hand side of an assignment. 

  Matrix m; Vector v; … 

  v(i,m)  // ref to m-element subvector whose 0th 

  //   element is v’s ith element 

  m(i,j,m,n)  // ref to mxn submatrix whose (0,0) 

  //   element is m’s (i,j) element 

5.3.4 Output 

The C++ operator <<  is overloaded for all the matrix and vector types so you can look at a 

human-readable version of their contents via statements like 

Matrix m; 

std::cout << “m=” << m; 

5.4 Basic Geometry and Mechanics 

In this section, we provide information on several basic Simbody classes, all based on the 

small Vec and Mat classes described above, that are used to deal with geometrical and 

mechanical concepts. 

5.4.1 Stations (points) 

Stations are simply points which are fixed in a particular reference frame or body (i.e., they 

are “stationary” in that frame). They are specified by the position vector which would take 

the frame’s origin to the station. A position is represented by a Vec3 type. Simbody does not 

provide an explicit Station class; Vec3s are adequate whenever a station is to be specified. 

5.4.2 Directions (unit vectors) 

Directions are unit vectors, which are Vec3s with the additional property that their lengths 

are always 1. Simbody provides a class UnitVec3 which behaves identically to Vec3 in most 

respects but restricts the ways in which values can be assigned to ensure that the length is 

always 1. This has the practical advantage that you never need to normalize a UnitVec3; it 

is guaranteed already to have been normalized. A UnitVec3 can be used in any context or 

operator that would normally take a Vec3 (that is, it has an implicit conversion to Vec3) 

except where the context would allow the Vec3 to be modified in a way that would change its 
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length. In particular, you can apply a Rotation to a UnitVec3 and get a UnitVec3 back 

because that operation is known to preserve length. 

Note that when you assign a Vec3 to a UnitVec3, normalization will be performed 

automatically, whereas assigning a UnitVec3 to a Vec3 or to another UnitVec3 requires 

no computation. If you attempt to set a UnitVec3 to zero, you will get NaNs instead. 

Some specialized constants and classes are provided for dealing conveniently with the 

coordinate axis directions: XAxis, YAxis, ZAxis are the type-safe constants associated 

with the CoordinateAxis class which provides useful methods for working with these. 

These constants implicitly convert respectively to 0, 1, or 2 when needed so can be used as 

indices. There is also a CoordinateDirection class whose constants are -XAxis, 

+YAxis, etc. UnitVec3 can provide the equivalent unit vectors. 

5.4.3 Rotations 

There are many ways to express 3D rotations. Examples are: pitch-roll-yaw, azimuth-

elevation-twist, axis-angle, and quaternions. Many others are in common use, and Simbody 

provides extensive support for most of them. However, each way of writing orientation has 

its own quirks and complexities, and all of them are equivalent to a 3x3 matrix, called a 

rotation matrix (synonyms: orientation matrix, direction cosine matrix). Rotation matrices 

have a particularly simple definition and straightforward physical interpretation, and are 

very easy to work with. Simbody uses the rotation matrix as a least common denominator, 

embodied in a class Rotation. Rotation provides a set of methods which can be used to 

construct a rotation matrix from a wide variety of commonly-used rotation schemes. These 

are represented internally in objects of type Rotation as an ordinary Mat33, and can be 

used wherever a Mat33 is expected, except that construction, assignment, and writable 

element access are restricted to ensure that certain properties are maintained. Columns 

(rows) of a Rotation have type UnitVec3 (UnitRow3) rather than Vec3 (Row3). 

There can be some confusion as to whether to use a rotation matrix or its inverse in a given 

context. We use a consistent notation to avoid that confusion, and show here how the 

notation corresponds to the physical layout of the SimTK::Rotation object. The symbol R 

with left and right superscripts 
from toR  represents the orientation of the “to” frame (the right 

superscript) measured with respect to the “from” frame (the left superscript), like this: 
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GG GG B

x y zR B B B     

(Bx is the x-direction unit vector of frame B, with measure numbers expressed in B’s frame, 

while the operator  
F

 indicates that the measure numbers of some physical quantity are 

re-expressed in coordinate frame F.) So the symbol 
G B

R  should be read “the axes of frame B 

expressed in frame G,” or “the orientation of frame B in G,” or just “B in G.” We never use 

“R” alone for a rotation matrix and neither should you; that is a recipe for certain disaster. 

Instead, always provide the two frames. Using this notation, you can simply match up 

superscripts to rotate vectors or compose rotations. When under tight typographical 

restrictions, as in source code, we write 
G B

R  in “monogram” notation as R_GB. Also, since 

these are orthogonal, the inverse of a rotation matrix is just its transpose, which serves 

simply to swap the superscripts. Use the Simbody “~” operator to indicate rotation 

inversion: ~
G B B G
R R . As an example, if you have a rotation 

G B
R  and a vector Bv expressed 

in B, you can re-express that same vector in G like this: 
G G B B

Rv v . To go the other 

direction, we can write ~
B B G G G B G

R R v v v . As a C++ code fragment, this can be 

written: 

Rotation R_GB;  //orientation of frame B in G 

Vec3     v_G;   //a vector expressed in G 

… 

Vec3     v_B = ~R_GB*v_G; //re-express v_G in frame B 

 

Composition of rotations is similarly accomplished by lining up superscripts (subject to 

order reversal with the “~” operator). So given 
G B

R  and 
G CR  we can get 

B C
R  as 

~
B C B G G C G B G C
R R R R R  . Note that the “~” operator has a high precedence like unary 

“–” so ~
G B G C
R R  is (~ )

G B G C
R R , not ~ ( )

G B G C
R R . 

As is typical for Simbody operations on small quantities, the transpose operator is actually 

just a change in point of view and involves no computation or copying of data. That is, the 

operations 
B G G
R v  and ~

G B G
R v  are exactly equivalent in both meaning and performance: 

the cost is just three inline dot products, with no wasted data copying or subroutine calls. 

There is also a Quaternion class you can use; look it up in the API documentation if you 

are interested. 
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5.4.4 Transforms 

Transforms combine a rotation and a position (translation) and are used to define the 

configuration (pose) of one frame with respect to another. We represent a frame B’s 

configuration with respect to another frame G by giving the measure numbers in G of each of 

B’s axes, and the measure numbers in G of the vector from G’s origin point to B’s origin 

point, for a total of 4 vectors, which can be interpreted as a 3x3 Rotation (see above) 

followed by the origin point location (a Vec3). We call this object a transform (abbreviated 

xform) and conceptually augment the axes and origin point to create a 4x4 linear operator 

which can be applied to augmented vectors (4th element is 0) or points (4th element is 1), or 

composed using matrix multiplication. We define a type Transform which conceptually 

represents transforms as follows:  

[ ] [ ] [ ]

0 0 0 1

G G G G B
x y zG B

B B B p
X

 
 
 
 

 

(The notation 
G B Go Bo

p p , that is, the vector from the origin of the G frame to the origin of 

the B frame.) We use the symbol X for transforms, with superscripts 
from toX  so 

G BX  means 

“the transform from frame G to frame B,” or “frame B measured from and expressed in 

frame G.” As for rotations, never write a transform as just X without indicating frames. 

When under tight typographical restrictions, as in source code, we write 
G BX  in 

“monogram” notation as X_GB. 

Another way to interpret 
G BX  is that it represents the operations that must be performed on 

G to bring it into alignment with B (a rotation and a translation). Then, as for rotation 

matrices described above, we can interpret 
G B B CX X  as a composition of operators yielding 

G CX , and ~
G BX is defined to yield the inverse transform 

B GX . 

The above transform matrix can be considered a matrix of four columns as shown: three 

augmented vectors and an augmented point. An alternate, and entirely equivalent, way to 

view this is as a rotation matrix, translation vector, and an extra row: 
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 0 0 0 1

G B G B

G B
R p

X

    
    
         
   
 
 
 

 

In our implementation, the physical layout of a Simbody Transform is just the three 

columns of the rotation matrix followed immediately in memory by the translation vector, 

that is,  
3 4

G B G B G B
X R p


 . There is no need for the fourth row to be stored in memory 

since it is always the same. 

The multiplication operator * is overloaded to work with transforms on Vec3 objects with 

the assumption that these are points (stations) to be shifted as well as rotated. That is, they 

are treated as though there were a fourth element set to 1. If you only want to apply a 

rotation, you can extract the Rotation matrix from the Transform and then apply that. As 

an example: 

Transform X_GB;  //orientation and position of frame B in G 

Vec3 v_G;   //a vector expressed in G 

Vec3 p_G;   //location of point measured from G’s origin, expressed 

in G 

… 

Vec3 p_B = ~X_GB*p_G; //point p, now measured from B’s origin, exp. 

in B 

Vec3 v_B = ~X_GB.R()*v_G; //re-express v_G in frame B, without 

shifting 

 

Given a Transform, you can work with it as though it were a 4x4 matrix, or work directly 

with the rotation matrix R and translation vector p individually, without having to make 

copies (methods x.R() and x.p() are available to provide references to the contained 

objects of a transform x). Although a transform defined this way is not orthogonal, its 

inverse is easy to apply with no additional calculation. Simbody overloads the normal matrix 

transpose operator “~” to recast a Transform to its inverse so that either the transform or 

its inverse can be used conveniently in an expression, for example, ~
B C G B G C
X X X . 

5.4.5 Inertia and MassProperties 

The Simbody Inertia class is a 3x3 symmetric matrix. The class provides some convenient 

constructors and methods for shifting to and from a body’s center of mass. Simbody uses 
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this class for specifying body inertia properties. There is also a UnitInertia class which 

represents inertia per unit mass (this is sometimes called a “gyration” matrix); multiplying a 

UnitInertia by a mass yields an Inertia. The MassProperties class combines a mass, 

center of mass location, and inertia to provide the complete mass properties for a rigid body. 

If you want to see what you can do with these classes, look them up in the Doxygen-

generated API reference documentation available at https://simtk.org/home/simbody, 

Documents tab. 

5.5 Available Simbody Numerical Methods 

Simbody uses many advanced numerical methods, and these are available for direct use in 

your programs if you need them. We call the collection of numerical methods “Simmath”. 

Some of the most commonly used are: 

 Linear algebra (various object-oriented factorization and eigenvalue classes, as well 

as direct access to Lapack and Blas if needed). 

 Optimization (constrained and unconstrained), see Optimizer and subclasses. 

 Numerical integration (see Integrator class and subclasses) 

 Numerical differentiation (see Differentiator class) 

 Random number generation (see Random class) 

 Polynomial root finding (see PolynomialRootFinder class) 

 Spline fitting (see Spline_<T> and SplineFitter classes) 

 

For more information, see the Simmath User’s Guide at https://simtk.org/home/simbody, 

Documents page.  Detailed information is provided in the Doxygen-generated API Reference 

that describes individual classes and methods, also on the Documents page. 

In the next chapter we’ll see an example of using the Optimizer classes. 

5.6 Some other Simbody classes and utilities 

Simbody contains a collection of utility classes that have proven useful when writing 

programs that use the Simbody API. You can read about them in the API reference 

documentation mentioned above. Here we’ll give a brief description and where to look for 

https://simtk.org/home/simbody
https://simtk.org/home/simbody
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more information (where there are class or function names you can type them into the 

search box in the API documentation). 

 Parallel execution and threading: ParallelExecutor, Parallel2DExecutor, 

ParallelWorkQueue, AtomicInteger, ThreadLocal<T>, threadCpuTime() 

function 

 Predefined constants at high precision: see “Predefined Constants” under “Modules” 

in the API documentation 

 Contact classes: see contact example programs in the Simbody examples directory. 

Also, Contact, ContactGeometry, ContactSurface, 

ContactTrackerSubsystem, CompliantContactSubsystem 

 Geometry: DecorativeGeometry, ContactGeometry, PolygonalMesh 

 Some useful solvers: LocalEnergyMinimizer, Assembler (inverse kinematics, 

motion tracking), ObservedPointFitter, project() method of System class. 

 Platform-independent file name handling: Pathname 

 Platform-independent handling of plug-in libraries: Plugin 

 String handling: String 

 Reading and writing Xml files: Xml and related classes 

 Timing and miscellaneous inline utilities: realTime(), cpuTime(), step(), 

clamp(), square(), cube(), sign(), isFinite(), isInf(), isNaN(), elliptic 

integrals, various bit functions: see Global Functions in the SimTK namespace under 

“Modules” in the API documentation. 

 





 

 

6 Complex Example: A 

Protein Simulation 

In chapter 4 we simulated a very simple system with only two degrees of freedom. Now let’s 

make an enormous jump in complexity, and simulate an entire protein. This would be 

difficult with just Simbody, but the Molmodel API exists specifically for this purpose and 

makes it very easy to create Simbody models of molecules. 

Even if you are not using Molmodel and have no interest in molecules, you should still take a 

look at this example since most of what it does involves only the Simbody API. Molmodel is 

just a modeling layer that helps build Simbody models for a specific class of physical system; 

any use of Simbody will begin with a modeling phase of some sort. 

6.1 Simulating a Protein 

The following program loads a protein structure from a PDB file, constructs a System 

representing it, and simulates its behavior for 10 ps. 

#include "Molmodel.h" 

using namespace SimTK; 

 

int main() { 

  try { 

    // Load the PDB file and construct the system. 

    CompoundSystem system; 

    SimbodyMatterSubsystem matter(system); 

    DecorationSubsystem decoration(system); 

    DuMMForceFieldSubsystem forces(system); 

    forces.loadAmber99Parameters(); 

    PDBReader pdb("1PPT.pdb"); 

    pdb.createCompounds(system); 

    system.modelCompounds(); 

    // Adjust the temperature periodically. 

    system.addEventHandler(new VelocityRescalingThermostat(system, 293.15, 0.1)); 

    // Arrange for visualization. 

    system.addEventReporter(new Visualizer::Reporter(system, 0.025)); 

    // Initialize and get the default state for the simulation. 

    State state = system.realizeTopology(); 
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    pdb.createState(system, state); 

    LocalEnergyMinimizer::minimizeEnergy(system, state, 15.0); 

     

    // Simulate it. 

    VerletIntegrator integ(system); 

    integ.setAccuracy(1e-2); 

    TimeStepper ts(system, integ); 

    ts.initialize(state); 

    ts.stepTo(10.0); 

 

  } catch (const std::exception& e) { 

    std::cout << “Error: “ << e.what() << std::endl; 

    return 1; 

  } 

} 

 

When you run this program, a Visualizer window should appear and (after some delay for 

building the model and doing energy minimization) display the protein: 

 

Before we go through the code in detail, let’s take a moment to consider how one goes about 

modeling a molecule. In previous chapters, we have described multibody systems in terms of 

rigid bodies connected by joints. In molecular simulations, it’s more natural to use a 

different language. One thinks of molecules, which are made up of atoms connected by 

covalent bonds. What is the relationship between these two descriptions? 
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One answer would be to simply equate them. You could say that each atom is a rigid body, 

and each bond is a joint. That is certainly an option, but it isn’t the only one, and it often isn’t 

the best one. 

When simulating a macromolecule, one usually constrains the bond lengths to remain fixed, 

and often some of the bond angles as well. This produces clusters of atoms that are 

completely immobile with respect to each other. If you treat each of these clusters as a rigid 

body, the system will have many fewer bodies than atoms. This results in a simpler system 

that is easier to simulate. 

The Molmodel interface to Simbody lets you work with either description, and translate 

from one to the other. It describes molecules in terms of Compounds. A Compound is a set 

of atoms covalently bonded to each other: a molecule or a piece of a molecule. A Compound 

may be built up hierarchically out of other compounds. For example, a protein is a single 

Compound, but each amino acid residue it contains is itself a Compound. 

After you create one or more Compounds, you add them to a CompoundSystem, which is a 

subclass of MultibodySystem. The CompoundSystem examines the Compounds and 

generates an appropriate set of MobilizedBody objects based on them.  You can tell it which 

bonds and angles should be constrained, and it automatically figures out what sets of atoms 

form rigid bodies and what degrees of freedom they have. 

Now let’s look at the code. Notice that we include Molmodel.h instead of Simbody.h. This 

gets us the molecular modeling extensions we want, and also includes all of Simbody as well. 

We begin by creating our CompoundSystem and Subsystems: 

CompoundSystem system; 

SimbodyMatterSubsystem matter(system); 

DecorationSubsystem decoration(system); 

DuMMForceFieldSubsystem forces(system); 

 

There are two new Subsystems that we haven’t seen before. DecorationSubsystem lets you 

add arbitrary decorations to a System to control how it is visualized. When 

CompoundSystem looks through the Compounds and creates MobilizedBody objects from 

them, it also creates a set of decorations to draw the molecules in a standard way. 

Decorations never affect the behavior of a simulation. DuMMForceFieldSubsystem provides 

a standard molecular dynamics force field. It has built in support for the Amber99 force field 

parameters, which we load by calling 
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forces.loadAmber99Parameters(); 

 

If you want to use a different set of parameters, you can load them from a file by calling 

populateFromTinkerParameterFile() instead. It also uses a GBSA implicit solvation model to 

represent the effect of water. (It doesn’t make sense to use explicit solvation for a reduced-

coordinate molecular model, except possibly for a few localized waters.) 

Now we need to create a set of Compound objects and tell the CompoundSystem to create 

MobilizedBody objects from them. We could create them directly, but in this example we use 

a different method: we do it by loading a PDB file: 

PDBReader pdb("1PPT.pdb"); 

pdb.createCompounds(system); 

system.modelCompounds(); 

 

The argument to the PDBReader constructor is the name or path of the file to read. In this 

example, we use the 1PPT structure downloaded from http://www.pdb.org. This is a small, 

36 residue protein. When we call createCompounds(), it creates all the necessary 

Compounds and adds them to the CompoundSystem. Finally, we call modelCompounds(), 

which causes the CompoundSystem to generate MobilizedBodies based on the Compounds 

that have been added. 

Next we add an event handler to the System: 

System.addEventHandler(new VelocityRescalingThermostat(system, 293.15, 0.1)); 

 

Molecular simulations are usually performed at constant temperature, so we need a 

thermostat to maintain the temperature. VelocityRescalingThermostat does this by 

periodically rescaling all of the velocities in the System. We tell it to maintain a temperature 

of 293.15 K (20C), and to rescale the velocities every 0.1 ps. In the previous chapter we used 

SI units. In this chapter we use a different set of units known as MD units that measure 

length in nm, mass in Daltons, time in ps, and energy in kJ/mol. Unlike Simbody, which is 

units-agnostic, the Molmodel interface requires MD units. SimTK provides predefined 

constants that give the values of various physical constants in both systems of units. 

We also add a Visualizer::Reporter to show a movie of our simulation, and ask it to show a 

frame every 0.025 ps. Here we’re using a constructor that tells the Reporter to allocate its 

own Visualizer for the System, with all-default options: 

system.addEventReporter(new Visualizer::Reporter(system, 0.025)); 

http://www.pdb.org/
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The default background for a CompoundSystem is plain white; that’s different from a 

MultibodySystem where the default background is a ground plane with a blue sky. 

After creating the System, we need to create an initial State. We can get an appropriate State 

object from the return value of the realizeTopology() method; however, that will be some 

simple, regular configuration (such as fully extended), not the molecule’s configuration as 

found in the pdb file. Once again we turn to the PDBReader: 

State state = system.realizeTopology(); 

pdb.createState(system, state); 

  

This method figures out the values of all generalized coordinates that produce a best fit to 

the coordinates read from the PDB file and sets the generalized coordinates (position states 

q) in the State object. 

We could use this State as the starting point for our simulation, but that usually is not a good 

idea. PDB structures have significant uncertainty in them, and may not be at a local 

minimum of the particular potential function we are using; some atoms may even overlap. If 

we started the simulation from this State, the protein might experience very large forces that 

would disrupt its structure. We therefore perform a local energy minimization to get a better 

starting State: 

LocalEnergyMinimizer::minimizeEnergy(system, state, 15.0); 

  

We now are ready to perform our simulation. This works exactly as it did in the last chapter, 

although we’re using a different Integrator: we create a VerletIntegrator and TimeStepper, 

initialize it, and tell it to step to 10 ps. There is only one line that is different: 

integ.setAccuracy(1e-2); 

  

Biomolecular systems can usually be integrated at fairly low accuracy. We are simulating a 

large, chaotic system at constant temperature, so small errors in the integration have very 

little effect on the long time behavior of the simulation. We therefore tell the Integrator to 

use lower accuracy than the default. This allows it to take larger time steps, which makes the 

simulation faster. 
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6.2 Accelerating Molmodel with OpenMM 

If you have OpenMM installed and operating on a hardware-accelerated platform (e.g. 

CUDA) on your computer, you can easily use it to accelerate the protein simulation we did 

above. Simply insert the lines: 

forces.setUseOpenMMAcceleration(true); 

forces.setTraceOpenMM(true); 

 

before the call to realizeTopology(). Only the first line is required; the second is very useful 

though to verify that OpenMM is actually being used and to debug the problem if not—it 

sends helpful trace output to stdout (cout). Note that if you did not install SimTK in its 

standard location, the environment variable SimTK_INSTALL_DIR must be set so that the 

OpenMM plugin can be located (it is in $SimTK_INSTALL_DIR/lib/plugins). 

For problems with OpenMM installation, go to https://simtk.org/home/openmm. Note that 

acceleration requires supported hardware, appropriate drivers, and an OpenMM 3.0 

installation.  

6.3 Vector Arithmetic: Calculating Radius of Gyration 

Watching a movie of a protein is fine as far as it goes, but you generally want to analyze your 

simulations in a more quantitative way. In this section, we will expand the previous example 

to monitor the radius of gyration of the protein over the course of the simulation. The radius 

of gyration is defined by 



RG 
1

N
ri  ravg

2

i1

N

  

where N is the number of atoms, ri is the location of the i’th atom, and ravg is the average 

location of all atoms. In this example, we will calculate it based only on the alpha carbon of 

each residue. 

Before looking at the code, this might be a good time to say something about matrix and 

vector math in SimTK. The Vec3 class has already appeared a few times in the earlier 

examples, but I didn’t comment on it, since it was generally obvious from the context how it 

was being used. This example will require more significant vector math. 

Actually, SimTK has two different sets of classes for vector math. First, there are classes to 

represent small, fixed size vectors and matrices: Vec for column vectors, Row for row 

https://simtk.org/home/openmm
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vectors, and Mat for Matrices. These classes are templatized based on size and element type. 

Synonyms are defined for common combinations; for example, Vec3 is a synonym for 

Vec<3,Real>, while Mat22 is a synonym for Mat<2,2,Real>. You can also create other 

combinations, such as Mat<2,10,Real> or Vec<4,Complex>. 

Second, there are classes to represent large vectors and matrices whose sizes are determined 

at runtime: Vector_ for column vectors, RowVector_ for row vectors, and Matrix_ for 

matrices. These classes are templatized based on element type only. Vector, RowVector, and 

Matrix are synonyms for Vector_<Real>, RowVector_<Real>, and Matrix_<Real>, 

respectively. Again, you can use other element types. In fact, the element type can even be a 

fixed-size vector or matrix. For example, Vector_<Vec3> is a variable-length vector, where 

each element is itself a three-component vector. 

All of these classes support standard mathematical operators like +, -, and *. The ~ operator 

performs a transpose (or more precisely, Hermitian conjugate which is the same as 

transpose for real numbers). There also are versions of many standard math functions that 

operate on vectors and matrices: sin(), exp(), sqrt(), abs(), sum(), mean(), etc. These allow 

many calculations to be written in a very concise way. 

Here is the code for the event reporter that monitors the radius of gyration. 

class RadiusReporter : public PeriodicEventReporter { 

public: 

    RadiusReporter(const CompoundSystem& system, const Compound& compound, 

                   Real interval)  

    :   PeriodicEventReporter(interval), system(system), compound(compound) { 

        for (Compound::AtomIndex i = Compound::AtomIndex(0); i < 

                compound.getNAtoms(); ++i) { 

            std::string name = compound.getAtomName(i); 

            if (name.size() > 3 && name.substr(name.size()-3) == "/CA") 

                atoms.push_back(i); 

        } 

    } 

    void handleEvent(const State& state) const { 

        system.realize(state, Stage::Position); 

        Vector_<Vec3> pos(atoms.size()); 

        for (int i = 0; i < atoms.size(); ++i) 

            pos[i] = compound.calcAtomLocationInGroundFrame(state, atoms[i]); 

        pos -= mean(pos); 

        Real radius = std::sqrt(~pos*pos/atoms.size()); 

        std::cout<<state.getTime()<<"\t"<<radius<<std::endl; 

    } 
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private: 

    const CompoundSystem&            system; 

    const Compound&                  compound; 

    std::vector<Compound::AtomIndex> atoms; 

}; 

 

We add it to the System with the following line: 

system.addEventReporter(new RadiusReporter(system, 

    system.getCompound(Compound::Index(0)), 0.1)); 

 

The constructor arguments are the CompoundSystem we are working with, the Compound 

for which to calculate RG, and the reporting interval. 

The constructor builds a list of all the atoms that will be used in the calculation. It does this 

by looping over all atoms in the Compound and checking the name of each one. If the name 

ends in “/CA”, it is the alpha carbon of some residue, so we add it to the list. 

Now look at handleEvent(). Since we will be working with the locations of atoms in Cartesian 

coordinates, we first realize the State to Position stage. We then look up the location of each 

atom: 

Vector_<Vec3> pos(atoms.size()); 

for (int i = 0; i < atoms.size(); ++i) 

    pos[i] = compound.calcAtomLocationInGroundFrame(state, atoms[i]); 

 

We store the locations in a Vector_<Vec3>; that is, a vector of which each element is itself a 

three-component vector. 

We now need to calculate RG. Since it involves a sum over ri-ravg, we first subtract the 

average atom position from each one: 

pos -= mean(pos); 

  

We now can do the rest of the calculation in a single line: 

Real radius = std::sqrt(~pos*pos/atoms.size()); 

 

That line may seem a bit confusing at first. How does it represent the entire calculation for 

radius of gyration? Let’s look at it more closely, particularly the expression ~pos*pos. 

Remember that ~ is the transpose operator, so this expression is simply the dot product of 

pos with itself (you can also write dot(pos,pos) if you prefer). It multiplies each element by 

itself, and adds them up. But each element of pos is itself a Vec3. The ~ operator transposes 
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these sub-vectors along with the parent vector, so we are actually taking the dot product of 

each Vec3 with itself (yielding the absolute value squared), then adding all of them up. 

Finally we divide by the number of atoms and take the square root to yield RG: not bad for a 

single line of code! 

Here is a graph of the radius of gyration over the course of the simulation. As you can see, it 

has very little variation, indicating that the protein is stable. 

 

Before we leave this example, I should point out that I cheated a bit at one point. I assumed 

the System contained only one top level Compound, and simply called 

getCompound(Compound::Index(0)) to look it up. This is not always a good assumption. If 

the PDB file contained multiple protein chains, each one would be a separate Compound. I 

really should have asked the System how many Compounds there were, and looped over all 

of them. But I happened to know that the particular PDB file I was working with only 

contained one chain, and making the code more general would have resulted in an example 

that was more complicated but no more educational. For real programs, though, you should 

handle this more robustly. 

6.4 Using an Optimizer: RMS Distance from Native 

In this section we will measure a different quantity over the course of our simulation: the 

root-mean-square distance (RMSD) from the native structure. This is defined as 
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RMSD
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where ri is the position of the i’th atom at the current time, and ri
0 is the position of that 

atom in the native structure. 

At first, this might seem like a trivial modification to the previous example, but there’s a 

catch. Over time, the molecule may drift or rotate away from its starting position. We don’t 

care about that, and we don’t want it to cause the RMSD to change. We only care about 

conformational changes in the molecule. We therefore need to align the two states before 

calculating the RMSD. That is, out of all possible translations and rotations that could be 

applied to the molecule, we want to find the one that minimizes the RMSD. 

SimTK provides a tool for solving problems of this sort: the Optimizer class. To use it, you 

define a function of the form 



y  f (x) 

where x is a vector of parameters, and f(x) is a real valued function of those parameters. 

Optimizer searches for a set of values for the parameters x at which y is a local minimum. 

You can also impose constraints on the allowed parameter values. 

You define the function by creating an object which subclasses OptimizerSystem. Here is an 

OptimizerSystem that calculates the RMSD between two structures. 

class RMSDFunction : public OptimizerSystem { 

public: 

    RMSDFunction(const Vector_<Vec3>& pos1, const Vector_<Vec3>& pos2)  

    :   OptimizerSystem(6), pos1(pos1), pos2(pos2) {} 

 

    int objectiveFunc(const Vector& params, bool new_params, 

                      Real& f) const { 

        Rotation R; 

        R.setRotationToBodyFixedXYZ(Vec3(params[0], params[1], params[2])); 

        Transform X(R, Vec3(params[3], params[4], params[5])); 

        Vector_<Vec3> diff = X*pos1-pos2; 

        f = std::sqrt(~diff*diff/pos1.size()); 

        return 0; 

    } 

private: 

    const Vector_<Vec3>& pos1; 

    const Vector_<Vec3>& pos2; 

}; 
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The arguments to the constructor contain the atom positions in the two States we want to 

compare. We pass 6 to the superclass constructor to tell it that our function has six 

parameters to be optimized: three rotation angles and three translation distances. 

Now look at objectiveFunc() which calculates the function to be minimized. Each time it is 

called, it receives a vector of parameter values. We choose to interpret them as a 

transformation X to be applied to pos1. We therefore use them to create a Transform object, 

which combines a rotation (represented by a Rotation object R) and a translation 

(represented by a Vec3): 

Rotation R; 

R.setRotationToBodyFixedXYZ(Vec3(params[0], params[1], params[2])); 

Transform X(R, Vec3(params[3], params[4], params[5])); 

 

We apply it to pos1, take the difference between that and pos2, and calculate the RMSD 

exactly as we calculated the radius of gyration in the previous section: 

Vector_<Vec3> diff = X*pos1-pos2; 

f = std::sqrt(~diff*diff/pos1.size()); 

 

An OptimizerSystem can implement other methods as well. If you know how to calculate the 

gradient or Jacobian of the function analytically, you can provide methods to calculate them. 

This can speed up the optimization quite a bit, especially when there are many parameters. 

If you want to apply constraints to the parameters, you can provide a method to evaluate the 

constraint errors. But for simple cases like this one, a single method is all we need. 

Now we are ready to write our event reporter. Here it is. 

class RMSDReporter : public PeriodicEventReporter { 

public: 

    RMSDReporter(const CompoundSystem& system, const Compound& compound, 

                 Real interval)  

    :   PeriodicEventReporter(interval), system(system), compound(compound) { 

        for (Compound::AtomIndex i = Compound::AtomIndex(0);  

             i < compound.getNAtoms(); ++i) { 

            std::string name = compound.getAtomName(i); 

            if (name.size() > 3 && name.substr(name.size()-3) == "/CA") 

                atoms.push_back(i); 

        } 

    } 

    void setReferenceState(const State& state) { 

        system.realize(state, Stage::Position); 
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        refPos.resize(atoms.size()); 

        for (int i = 0; i < atoms.size(); ++i) 

            refPos[i] = compound.calcAtomLocationInGroundFrame(state, atoms[i]); 

    } 

    void handleEvent(const State& state) const { 

        system.realize(state, Stage::Position); 

        Vector_<Vec3> pos(atoms.size()); 

        for (int i = 0; i < atoms.size(); ++i) 

            pos[i] = compound.calcAtomLocationInGroundFrame(state, atoms[i]); 

        RMSDFunction func(refPos, pos); 

        Optimizer opt(func); 

        opt.useNumericalGradient(true); 

        opt.useNumericalJacobian(true); 

        Vector parameters(6, 0.0); 

        opt.optimize(parameters); 

        Real rmsd; 

        func.objectiveFunc(parameters, true, rmsd); 

        std::cout<<state.getTime()<<"\t"<<rmsd<<std::endl; 

    } 

private: 

    const CompoundSystem&            system; 

    const Compound&                  compound; 

    Vector_<Vec3>                    refPos; 

    std::vector<Compound::AtomIndex> atoms; 

}; 

 

The constructor is identical to the one in the previous example.  After the System has been 

created and the State representing the native structure has been created, we must call 

setReferenceState(). This looks up the position of every atom and stores them for later use. 

Now look at handleEvent(). The first few lines should look very familiar. Once again, we 

realize the State and look up the position of every atom. We then create an instance of our 

OptimizerFunction, passing to it the two vectors of atomic positions we want to compare: 

RMSDFunction func(refPos, pos); 

  

We then create and initialize an Optimizer: 

Optimizer opt(func); 

opt.useNumericalGradient(true); 

opt.useNumericalJacobian(true); 

 

Those last two lines tell the Optimizer how to calculate the gradient and Jacobian of the 

objective function. By default, it calls methods on the OptimizerSystem to calculate them. 
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Since we have not provided any such methods, we tell it to calculate them from numerical 

differences instead. 

We now create a vector of parameter values and invoke the Optimizer: 

Vector parameters(6, 0.0); 

opt.optimize(parameters); 

 

The constructor arguments tell it to create a vector of length 6, and to initialize all elements 

to 0. On entry, this vector contains the initial parameter values from which to search for a 

local minimum. On exit, it contains the values that optimize the objective function. 

We now have the optimal parameter values, but we really want to know the corresponding 

RMSD. That requires one more call to the RMSDFunction: 

Real rmsd; 

func.objectiveFunc(parameters, true, rmsd); 

 

At the time we add the RMSDReporter to our System, we don’t yet have a State representing 

the native structure, so we need to keep a reference to it: 

RMSDReporter* rmsd = new RMSDReporter(system, 

    system.getCompound(Compound::Index(0)), 0.1); 

system.addEventReporter(rmsd); 

 

Then, after we call createState() on the PDBReader to find the native structure, we can pass 

it on to the reporter: 

rmsd->setReferenceState(state); 

  

Here is a graph of the RMSD over the course of the simulation: 
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It fluctuates up and down, but overall is fairly flat. This again shows that the protein is stable 

and is not drifting away from the native structure. 

Before leaving this example, I should mention that using an Optimizer is not actually the 

most efficient way to solve this particular problem. Finding the optimal alignment between 

two sets of points can be done analytically, which is faster than doing an iterative 

optimization. But of course, the real goal of this example was to show how to use the 

Optimizer class, which is useful for solving a wide variety of problems. 


