
Documents

 Simbody and

Molmodel User’s

Guide

Release 3.5

December, 2014

 https://simtk.org/home/simbody, https://simtk.org/home/molmodel

Copyright and Permission Notice

Portions copyright (c) 2008-14 Stanford University, Peter Eastman, Michael Sherman.

Permission is hereby granted, free of charge, to any person obtaining a copy of this document (the "Document"),
to deal in the Document without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Document, and to permit persons to whom the
Document is furnished to do so, subject to the following conditions:

This copyright and permission notice shall be included in all copies or substantial portions of the Document.

THE DOCUMENT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS,
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE DOCUMENT OR THE USE OR OTHER DEALINGS IN THE DOCUMENT.

Acknowledgments

SimTK software and related activities are funded by the Simbios National Center for

Biomedical Computing at Stanford University (http://simbios/stanford.edu) through the

National Institutes of Health Roadmap for Medical Research, Grant U54 GM072970.

Information on the National Centers can be found at

http://nihroadmap.nih.gov/bioinformatics.

http://simbios/stanford.edu
http://nihroadmap.nih.gov/bioinformatics

Table of Contents

TABLE OF CONTENTS .. V

1 INTRODUCTION ... 1

1.1 What are SimTK, Simbody, and Molmodel? ... 1

1.2 What is a multibody system? .. 2

1.3 Using this manual .. 4

1.4 Getting more information ... 4

1.5 License .. 4

1.6 How to acknowledge us ... 5

2 SIMBODY THEORY AND ARCHITECTURE OVERVIEW 7

2.1 Mathematical Overview ... 7

2.2 Systems and States... 9

2.3 Systems and Subsystems .. 11

2.4 The Realization Cache ... 12

2.5 Events ... 14

2.6 The Simbody library stack ... 15

3 INSTALLING SIMBODY AND MOLMODEL ... 17

4 SIMPLE EXAMPLE: A DOUBLE PENDULUM .. 17

4.1 A First Example .. 17

4.2 A Scheduled Event Reporter ... 25

4.3 A Triggered Event Reporter .. 28

4.4 An Event Handler .. 30

4.5 Constraints ... 32

5 SOME SIMBODY BASICS ...34

5.1 Naming Conventions ... 34

5.2 Numbers and Constants in SimTK ... 34

5.3 Vectors and Matrices ... 35

5.3.1 Operators .. 36

5.3.2 Construction and assignment ..37

5.3.3 Indexing .. 38

5.3.4 Output ... 39

5.4 Basic Geometry and Mechanics .. 39

5.4.1 Stations (points) ... 39

5.4.2 Directions (unit vectors) ... 39

5.4.3 Rotations ... 40

5.4.4 Transforms .. 42

5.4.5 Inertia and MassProperties .. 43

5.5 Available Simbody Numerical Methods ... 44

5.6 Some other Simbody classes and utilities .. 44

6 COMPLEX EXAMPLE: A PROTEIN SIMULATION 47

6.1 Simulating a Protein .. 47

6.2 Accelerating Molmodel with OpenMM .. 52

6.3 Vector Arithmetic: Calculating Radius of Gyration .. 52

6.4 Using an Optimizer: RMS Distance from Native .. 55

1 Introduction

1.1 What are SimTK, Simbody, and Molmodel?

SimTK is the Simbios Biosimulation Toolkit, a collection of open source software tools

supporting high-performance physics based simulation of biological structures. SimTK

includes a variety of application programs and a software development kit (SDK). The SDK

includes a family of application programming interfaces (APIs) for convenient and efficient

handling of the various tasks that arise in physics based simulation, including vector and

matrix arithmetic, linear algebra, numerical integration, optimization, and so on. Most

importantly, the SDK contains

 Simbody, an API for performing internal coordinate simulations of multibody

systems, and

 OpenMM, an API for GPU-accelerated computation of molecular force fields, and

 Molmodel, an API that uses Simbody to build internal coordinate molecule models

that can use OpenMM-accelerated force fields, and

 OpenSim API, which uses Simbody to build internal coordinate models of

biomechanical systems, such as human musculoskeletal models for studying gait

disorders.

All SimTK software is hosted and distributed via simtk.org. But note that simtk.org also

serves as a biosimulation community hosting site so there are also many projects hosted

there that are not part of the SimTK toolkit.

OpenMM is used independently for particle-based molecular simulations and is packaged

and released separately from Simbody and Molmodel. We won’t present the OpenMM API

here; see https://simtk.org/home/openmm for more information. OpenSim API is also

packaged and released separately from Simbody and Molmodel, as part of the OpenSim

project that includes a complete GUI for musculoskeletal simulation. We won’t present the

OpenSim API here either; see https://simtk.org/home/opensim for more information.

https://simtk.org/home/openmm
https://simtk.org/home/opensim

What is a multibody system?

2

Simbody is developed and distributed via GitHub at https://github.com/simbody, with

description and documentation at https://simtk.org/home/simbody. It is used for

biomechanical simulations (see OpenSim), as well as related areas such as robotics, avatars,

and virtual world simulations.

Molmodel is developed and distributed via the project https://simtk.org/home/molmodel. It

extends the Simbody API to add molecule modeling and analysis features, and is thus

dependent on Simbody. It can optionally use OpenMM too, so installation of those packages

is a prerequisite for installation of Molmodel.

1.2 What is a multibody system?

In this guide we will discuss construction of internal coordinate multibody systems with

Simbody, and include some examples of using the Molmodel API to make internal

coordinate multibody models of molecules. Let’s take a moment to consider what that

means.

A multibody system is a model of a physical system composed of mass-carrying objects, each

of which is rigid or nearly rigid, but which can move significantly relative to each other. Here

are some examples of multibody systems:

 A human skeleton consists of rigid bones that move relative to each other by bending

at joints.

 A protein may be viewed as a collection of atoms or groups of atoms that are

internally rigid, but move relative to each other.

 An automobile engine consists of gears, pistons, and other rigid parts that move

relative to each other to produce overall motion.

Figure 1 shows some physical systems that can be modeled as multibody systems.

https://github.com/simbody
https://simtk.org/home/simbody
https://simtk.org/home/molmodel

 What is a multibody system?

3

Now let’s consider what is meant by an internal coordinate multibody model. Suppose you

are creating a computer model of a human skeleton. One possible approach would be to

independently specify the position and orientation of every bone. Although that could work,

it isn’t a very natural way to describe a skeleton. It omits all information about connectivity:

the fact that bones are attached to each other, that they can only move in very limited ways,

and that moving an arm should automatically cause the hand to move as well. You therefore

would need to add a very large number of constraints to the system to make it move in a

physically realistic way.

An alternative approach is to describe the system in terms of its internal coordinates. Rather

than specifying six degrees of freedom (three translations and three rotations) for each bone,

you specify only the ways in which the skeleton can actually move: for example, the angle by

which the right elbow is bent. The result is a simpler, more concise description of the state of

the system at any point in time. It also is computationally much more efficient, since it

requires many fewer constraints. However, the underlying implementation is considerably

more difficult in internal coordinates than in Cartesian coordinates.

This is what Simbody, SimTK’s multibody dynamics engine, does. It allows you to describe a

multibody system in whatever way is most natural. And it takes care of all the hard parts for

you: transforming between internal and Cartesian coordinates, calculating the inertial forces

that arise from rigid body motion, determining the effect of forces on internal coordinates,

imposing constraints, integrating equations of motion in terms of internal coordinates, and

many other details that you really don’t want to have to worry about. And it does all of these

things in ways that are efficient, robust, and numerically accurate.

Mechanical U-joint

Figure 1. Some multibody systems.

Protein backbone

Articulated
skeleton

Using this manual

4

1.3 Using this manual

This manual is intended as a starting place for new Simbody and Molmodel users. An

overview of the theory and architecture of Simbody is given in chapter 1. Detailed

installation instructions are provided in chapter 3, for Linux, Mac, or Windows installation.

Then a series of tutorial examples are given in chapter 4 for a simple Simbody example.

Chapter 5 steps back to take a look at some of the basic features of the Simbody API. Then

we return to examples in chapter 1 which presents a more complex example using Molmodel

to construct a Simbody model of a protein molecule, and then exercises a variety of Simbody

features to perform studies of the molecule.

1.4 Getting more information

The Simbody project home page https://simtk.org/home/simbody is the place to start for

more information. On the Documents page are this document and others including an

Advanced User’s Guide, the Simbody Theory Manual, technical papers, and the complete

Doxygen-generated reference documentation for the Simbody API:

https://simtk.org/api_docs/simbody/latest/index.html. (These are also available in the

doc/api subdirectory of your Simbody installation.)

Under Public Forums, you can find the Simbody help forum, which is a great way to get

personalized assistance with any problems or questions you have. If you want to report a bug

or request a new feature, the feature and bug trackers are under the Advanced tab.

There is also a Wiki on which you can find, and contribute, additional practical information

about using Simbody.

Molmodel-specific documentation, forums, wiki, etc. are handled analogously via the

Molmodel project home page at https://simtk.org/home/molmodel. If you are a Molmodel

user and aren’t sure whether you are seeing something Molmodel specific, go ahead and use

the Molmodel project anyway and we’ll move it to Simbody if need be.

1.5 License

Simbody and Molmodel are licensed under the extremely permissive MIT license, making

them freely available for any purpose. For details, see

http://wiki.simtk.org/simbody/LicenseAndCopyright.

https://simtk.org/home/simbody
https://simtk.org/api_docs/simbody/latest/index.html
https://simtk.org/home/molmodel
http://wiki.simtk.org/simbody/LicenseAndCopyright

 How to acknowledge us

5

1.6 How to acknowledge us

Our license does not require that you acknowledge us, but we and our sponsors would be

grateful if you did anyway! If our hard work has helped you with yours, please throw us a

bone and mention on your "About" page and in your documentation that you are using

Simbody from https://simtk.org/home/simbody. Where appropriate, please cite this paper:

Michael A. Sherman, Ajay Seth, Scott L. Delp, “Simbody: multibody dynamics for
biomedical research,” Procedia IUTAM 2:241-261 (2011)
doi:10.1016/j.piutam.2011.04.023

We would be particularly grateful if you mention that Simbody is primarily funded by NIH

Roadmap grant U54 GM072970. We appreciate that support very much, and the NIH

appreciates knowing that its funds are having an impact, particularly on medical research

and human health.

https://simtk.org/home/simbody.

2 Simbody theory and

architecture overview

This chapter provides brief background material on the mathematical background for

Simbody, the architecture as seen through the API, and the component modules that

together constitute the installed Simbody package. For a much more detailed discussion, see

the Simbody Theory Manual (available on the Simbody project’s Documents page) and the

following paper:

Michael A. Sherman, Ajay Seth, Scott L. Delp, “Simbody: multibody dynamics for
biomedical research,” Procedia IUTAM 2:241-261 (2011)
doi:10.1016/j.piutam.2011.04.023

You can find this and other papers on the Simbody project’s Documents and Publications

pages.

2.1 Mathematical Overview

In the previous section, we defined a multibody system as a model of a “physical system.”

That is one way to think of it, but it is not the only way. After all, simulations can only work

with virtual objects, not physical ones. From the simulation’s perspective, a multibody

system is a system of equations. If you have designed it well, the behavior of those equations

will in some way reflect the behavior of the physical system you are trying to simulate.

More specifically, the state of the system at any moment in time is described by a vector of

state variables. For example, a human skeleton could be described by the current angle and

angular velocity of every joint, plus the overall motion of the torso. We refer to this state

vector as y. The job of a simulation is to numerically integrate the equations of motion

 (,)
d

t
dt

y

f y (1)

to produce a complete time history y(t), called a trajectory. Here the function f(t, y) reflects

the forces acting on the bodies and the laws of physics.

Mathematical Overview

8

The vector of state variables can be subdivided into generalized coordinates, which we refer

to as q, generalized speeds, which we refer to as u, and auxiliary variables, which we refer

to as z. For example, the generalized coordinates of a human skeleton would be the set of

angles for all the joints, and the orientation and position of the torso, while the generalized

speeds would be the corresponding angular and linear velocities. If you were simulating a

person walking and wanted to keep track of the total energy used as they walked, that would

be an auxiliary state variable z; it does not describe the configuration of the skeleton, but is

defined by a differential equation so would need to be integrated along with the other state

variables. The full state vector y is the concatenation of these subvectors: y = [q, u, z].

The use of generalized coordinates avoids the need for most constraints because they are

embedded in the coordinate basis. However, it sometimes is necessary to impose additional

constraints on the behavior of a system. For example, some proteins contain disulfide bonds

that connect two distant parts of the chain. This is typically modeled as a constraint

requiring the distance between the two bonded atoms to remain fixed. Mathematically, a

constraint is an algebraic equation which must be satisfied at all times during the

simulation:

 (, ,) 0c t q u (2)

There is one such equation for every constraint imposed on the system. Together, they

represent a manifold on which the state vector is required to lie at all times.

The above discussion assumes the system can be modeled as evolving continuously

according to a set of differential and algebraic equations. In many cases, that is not enough.

A system may change discontinuously at discrete times. For example, suppose you are

modeling a person walking. As long as a foot is in the air, it has no interaction with the

ground. But for some methods of modeling contact, you must monitor its height, and when it

touches the ground, you must turn on a constraint to prevent it from passing down into the

ground or sliding along the ground. You then monitor the net force acting on the foot, and

when you see that it is directed upward, you release the constraint so the foot can rise back

off the ground again.

Mathematically, this is modeled with event trigger functions. These are arbitrary functions

of time and the state variables which are monitored continuously during the simulation. An

event is said to occur when a trigger function crosses through 0:

 Systems and States

9

 (,) 0e t y (3)

When an event occurs, the corresponding event handler is invoked, which can modify the

state in arbitrary, discontinuous ways.

We also extend the state description to include a set of discrete variables, which we refer to

as d. In the example above, you would use discrete variables to keep track of which

constraints were currently turned on. Discrete variables are not modified by equation (1).

They are changed only by event handlers, which modify them at discrete times. The forces,

constraints, and event functions in equations (1)-(3) may all depend on the current values of

discrete variables. Discrete variables can hold values of any type.

With discrete variables included, and showing the full set of constraints and event trigger

functions, our three equations are now:

 (; ,)
d

t
dt

y

f d y (4)

 0 (; , ,)t c d q u (5)

 0 (; ,)t e d y (6)

We show d set off by a semicolon as a reminder that discrete variables are held constant

during continuous intervals when t and y are changing.

2.2 Systems and States

Simbody uses two classes to represent the information associated with a multibody system:

System and State. You can think of these as the “constant” and “mutable” (non-constant)

parts of the system, respectively. A System object contains everything that is expected to

remain constant over the course of a simulation (including the code), while a State object

stores anything that is expected to change.

Systems and States

10

More specifically, a State object stores the following values:

 The time t.

 The continuous state variables y.

 The discrete state variables d.

It also provides spacing for storing other values that are calculated based on the state

variables listed above. This will be discussed shortly.

A State object is purely a place for storing data. In contrast, a System provides much of the

logic for the simulation. System functions include the following:

 It defines what information will be stored in a State (how many generalized

coordinates, how many generalized speeds, etc.).

 It provides routines to calculate the force function f(d; t, y), the vector of constraint

functions c(d; t, q, u), and the vector of event trigger functions e(d; t, y).

 It provides a routine which takes a state that does not satisfy the constraints, and

projects it onto the constraint manifold.

 It provides routines to handle events when they occur.

This division has several important advantages. You can easily save a copy of the State at any

point in the simulation, and be confident that you have not missed any other information

hidden away in some other object. It also ensures that derived quantities remain

synchronized with the state variables they were calculated based on, which eliminates a large

class of potential bugs.

System

Figure 2. A System is
constant once constructed;
everything changeable
about it is stored in separate

State objects. S
ta

te

 Systems and Subsystems

11

2.3 Systems and Subsystems

Now let’s look a bit more closely at how a System is put together. Each System is composed

of one or more subsystems, each represented by a Subsystem object. Most of the functions

described above are actually performed by the Subsystems, not by the System itself. For

example, the set of state variables for a System is simply the union of the state variables

defined by all its Subsystems. The force calculated by the System is simply the sum of the

forces calculated by all of its Subsystems. And so on.

This allows you to create a System in a modular way. Subsystems can interact with each

other, so you can split up your System in whatever way seems most convenient. For example,

one Subsystem might define a subset of the bodies in the system, and all the forces,

constraints, and events related to them. Alternatively, one Subsystem might define all the

state variables, a different Subsystem define the forces acting on them, and a third

Subsystem define a set of events.

Simbody provides a number of standard Subsystems ready for you to use. For example,

SimbodyMatterSubsystem allows you to build up arbitrary multibody systems out of a large

collection of joint types, while DuMMForceFieldSubsystem (in the Molmodel API) provides

a standard force field for use in molecular dynamics simulations. You will rarely need to

actually write a new Subsystem yourself.

In addition to whatever other Subsystems it has, every System has a default Subsystem. It

implements some standard functionality that is required for all Systems. We will see some

examples of what it can be used for later.

S
ta

te

System

Subsystem

Figure 3. Systems are

composed of Subsystems.

The Realization Cache

12

2.4 The Realization Cache

The state variables t, y, and d collectively represent a complete description of the state of the

system at a given time. On the other hand, there are lots of other numbers you might want to

know. Some examples include

 The position of each body in Cartesian coordinates

 The force acting on each body

 The resulting acceleration of each internal coordinate

 The values of event trigger functions

These are not really independent information. Given the state variables, you can calculate

them whenever you want. On the other hand, some of them may be expensive to calculate, so

you want to avoid recalculating them more often than necessary. The State object therefore

provides space for storing these derived values. This space is called the realization cache,

and the process of calculating the values stored in it is known as realizing the state.

If you look at the list of examples above, you will see that they need to be calculated in a

particular order. The Cartesian coordinates of each body generally need to be known before

the forces can be calculated, and the forces need to be known before the internal coordinate

accelerations can be calculated. It also is clear that not all of these pieces of information will

be needed in every situation. If you only care about the positions of bodies, you don’t want to

waste time on an expensive force calculation.

The realization cache is therefore divided into a series of stages. Each piece of information in

the cache belongs to a particular stage. When you want to realize part of the cache, you

specify what stage to realize it up to. This causes the information belonging to that stage and

all previous stages to be calculated. In other words, whenever you want to get some

information from the cache, you must first make sure the state has been realized up to the

stage that information belongs to. Figure 4 shows the complete list of stages, ten in all.

 The Realization Cache

13

The first four stages (Empty through Instance) are involved in the initial construction and

initialization of the system. Don’t worry about them right now. All of the information you

will want to access during a simulation is associated with one of the later stages. Here is the

information associated with each of the later stages:

Time: At this stage, no derived information has yet been calculated. You can query the State

for any of the state variables (t, y, and d), but nothing else.

Position: At this stage, the positions of all bodies in Cartesian coordinates are known.

Velocity: At this stage, the velocities of all bodies in Cartesian coordinates are known, along

with the amount by which the constraints are violated.

Dynamics: At this stage, the force acting on each body is known, along with the total

kinetic and potential energy of the system.

Acceleration: At this stage, the time derivatives of all continuous state variables are

known, along with the values of all event trigger functions.

1. Topology

2. Model

3. Instance

4. Time

5. Position

6. Velocity

7. Dynamics

S
ta

g
e
s

8. Acceleration

Figure 4. The organization of

a computation into ordered
stages. When a State is
realized to a given stage, the
cache information for that
stage (shown in brown) is
calculated and filled in. A
change to a state variable at a
given stage invalidates cache
information at that stage and

higher.

 9. Report

0. Empty

Events

14

Report: A State is not normally realized to this stage during a simulation. It is available in

case a System can calculate values that are not required for time integration, but might be

needed by an event handler or for later analysis. That way, these values will only be

calculated when they are actually needed.

The State makes sure that all values in the realization cache are consistent with the current

state variables. If you modify any state variable, the current stage will automatically “back

up” to an earlier stage, invalidating cache entries from later stages so they can no longer be

accessed. In particular:

 Modifying t will bring the State back to Instance stage.

 Modifying q will bring the State back to Time stage.

 Modifying u will bring the State back to Position stage.

 Modifying z will bring the State back to Velocity stage.

 When a System defines a discrete state variable d, it specifies what stage the State

should be reverted to when that variable is modified. This is chosen to ensure that

modifying the variable will invalidate any cache entry that may depend on it.

2.5 Events

Now let’s look at event handling in more detail. As described earlier, an event is signaled by

an event trigger function, e(d; t, y). When that function crosses through 0, an event is said to

occur, and a handler function is invoked.

In practice, this means that the value of the event trigger function is calculated at each time

step. When it changes sign from the previous time step, the integrator knows that an event

occurred at some point during the step. It then tries to identify exactly when the event

occurred by generating interpolated States at various points in the middle of the step and

evaluating the trigger function at each one.

The result is a time window (tlow, thigh] within which the event is known to occur. We don’t

know exactly when it occurred, only that it was somewhere within the window. You can

control how large a window is acceptable. Asking for a smaller window will produce more

accurate event localization, but also is slower.

 The Simbody library stack

15

The event handler is then invoked and given a State, which reflects what the state of the

system would have been at thigh if the event had not occurred. The event handler is free to

modify this State in whatever way it wants. Once it returns, the time integration continues

on, using the modified State as its starting point.

An important special case is events that are defined to occur at a particular time that is

known in advance. Of course, we can handle this case with the above mechanism, simply

defining the event trigger function as e(d;t,y)=e(t)=t-tevent. But that is unnecessarily

inefficient. We know in advance exactly when the event occurs, so there is no need to figure

it out by repeated evaluations of the trigger function on a series of interpolated States!

Simbody therefore provides a special purpose mechanism for events of this sort. They are

known as scheduled events, in contrast to triggered events which are determined based on

an event trigger function.

Another important special case is events that do not actually modify the State. For example,

perhaps you want to save a copy of the current State to disk at regular intervals for later

analysis. Or you might want to monitor a particular quantity and record the largest value it

ever takes on over the course of the simulation. In some cases, an integrator can save work if

it knows in advance that an event handler is only going to examine the State but not modify

it. Simbody therefore provides a separate mechanism for implementing event handlers of

this sort. They are known as event reporters.

Like most other aspects of a System, events are defined by Subsystems, but you don’t want to

have to write an entire Subsystem just to create a single event handler or event reporter. The

default Subsystem therefore provides an extensible mechanism to define new events. You

simply create a subclass of one of the following classes: TriggeredEventHandler,

ScheduledEventHandler, TriggeredEventReporter, or ScheduledEventReporter. You then

add it to the default Subsystem by calling addEventHandler() or addEventReporter() on it,

and it takes care of everything else for you. We will see examples of doing this in a later

chapter.

2.6 The Simbody library stack

Simbody consists of a set of modules that form a stack. Each module depends on those that

come before (above) it, but not the ones after (below) it.

The Simbody library stack

16

Module Function

LAPACK Provides routines for high performance linear algebra

SimTKcommon Contains many of the basic classes for representing

systems, states, vectors, matrices, event handlers, etc.

SimTKmath Provides a variety of high level numerical tools for

integration, differentiation, and optimization

Simbody Provides algorithms and data structures for modeling

multibody systems in internal coordinates

Molmodel (optional) Provides tools for modeling biological macromolecules

such as proteins and nucleic acids as Simbody internal

coordinate models; can use OpenMM for acceleration.

(If we were including OpenMM here, it would be at the same level as LAPACK; both are

hardware-accelerated computational tools independent of any other SimTK software. If we

were including the OpenSim API, it would be at the same level as Molmodel.)

In addition to these libraries, Simbody comes with a visualization and user-interaction tool

called the Simbody Visualizer. That is a separate executable program

(simbody-visualizer) installed in the bin subdirectory of the installation. When you use

Simbody’s Visualizer class, an attempt is made to launch that executable. However, Simbody

can be used without the Visualizer if you have your own methods for looking at the results.

For now, we will not worry too much about the boundaries between the different modules.

The Simbody installation includes all the lower levels; only Molmodel is installed separately.

You can access all of them from your code by including a single header file: Molmodel.h if

you are doing a biomolecular simulation, Simbody.h otherwise.

3 Installing Simbody and

Molmodel

Please see the README.md file displayed at https://github.com/simbody/simbody for up-to-

date instructions for Simbody.

Most users will not need Molmodel. If you are interested in it, please post to the user forum

at https://simtk.org/home/molmodel or https://simtk.org/home/rnatoolbox.

4 Simple Example: A Double

Pendulum

It’s now time to look at our first example. Here we’ll introduce features as we go. In the next

chapter we’ll step back and talk more about the Simbody API in general.

4.1 A First Example

The following program creates a system representing a double pendulum: one pendulum

attached to the end of a second one. It simulates the behavior of this system over a period of

50 seconds, and displays a movie of it.

https://github.com/simbody/simbody
https://simtk.org/home/molmodel
https://simtk.org/home/rnatoolbox

A First Example

18

#include "Simbody.h"

using namespace SimTK;

int main() {

 try {

 // Create the system.

 MultibodySystem system;

 SimbodyMatterSubsystem matter(system);

 GeneralForceSubsystem forces(system);

 Force::UniformGravity gravity(forces, matter, Vec3(0, -9.8, 0));

 Body::Rigid pendulumBody(MassProperties(1.0, Vec3(0), Inertia(1)));

 pendulumBody.addDecoration(Transform(), DecorativeSphere(0.1));

 MobilizedBody::Pin pendulum1(matter.Ground(), Transform(Vec3(0)),

 pendulumBody, Transform(Vec3(0, 1, 0)));

 MobilizedBody::Pin pendulum2(pendulum1, Transform(Vec3(0)),

 pendulumBody, Transform(Vec3(0, 1, 0)));

 // Set up visualization.

 Visualizer viz(system);

 system.addEventReporter(new Visualizer::Reporter(viz, 0.01));

 // Initialize the system and state.

 system.realizeTopology();

 State state = system.getDefaultState();

 pendulum2.setRate(state, 5.0);

 // Simulate it.

 RungeKuttaMersonIntegrator integ(system);

 TimeStepper ts(system, integ);

 ts.initialize(state);

 ts.stepTo(50.0);

 } catch (const std::exception& e) {

 std::cout << “Error: “ << e.what() << std::endl;

 return 1;

 }

}

Before you can compile and run this program, you need to have Simbody installed (see

Chapter 3). The installation directory has subdirectories “include”, “lib”, and “bin”. Make

sure the “include” directory is part of your compiler’s include path, and the “lib” directory is

available to the linker. At runtime the shared library directory (lib for Mac and Linux, bin for

Windows) must be on the appropriate “path” environment variable. Exactly how you do this

will depend on the compiler and operating system you are using.

 A First Example

19

If everything is working correctly, you should see a window that looks something like this,

showing an animation of the pendulum swinging:

Let’s go through the program line by line and see how it works. It begins with an include

statement:

#include "Simbody.h"

That gets us all the declarations we need to write a Simbody-using program.

Next we import the SimTK namespace, which includes nearly all of the symbols used by

SimTK:

using namespace SimTK;

That’s optional, but it saves having to preface every symbol with “SimTK::”.

A First Example

20

The try/catch block should always be included because most Simbody error conditions are

returned by throwing exceptions. We don’t expect any errors here but this is a good habit to

get into and can save a lot of trouble.

Now we create our System and a pair of Subsystems:

MultibodySystem system;

SimbodyMatterSubsystem matter(system);

GeneralForceSubsystem forces(system);

MultibodySystem is a subclass of System. It defines the functionality for working with

general multibody systems. In most cases, you will use a MultibodySystem or one of its

subclasses in your simulations.

SimbodyMatterSubsystem is the Subsystem that will define all the bodies in the system. It is

a modular Subsystem, to which you can add whatever bodies you want. A MultibodySystem

must always have a SimbodyMatterSubsystem. Notice that we do not explicitly add the

Subsystem to the System. Instead, the constructor takes a reference to the System, and it

adds itself.

GeneralForceSubsystem is a Subsystem that can be used to add a variety of forces to a

system. Much like SimbodyMatterSubsystem, it is designed to be modular; you can add

whatever forces you want to it. In the next line, we add a uniform gravitational force of 9.8

m/s2 in the negative y direction:

Force::UniformGravity gravity(forces, matter, Vec3(0, -9.8, 0));

The Force class has many subclasses representing a variety of common forces: springs,

dampers, constant forces, etc. It also has a subclass called Force::Custom, which you can use

to define completely new forces.

To understand the next few lines, we need to consider two important classes: Body and

MobilizedBody. The Body class represents the physical properties of a body, such as its mass

and moment of inertia. Body::Rigid is a subclass that represents a generic rigid body. The

MobilizedBody class combines the body’s physical properties (represented by a Body object)

with a set of mobilities—that is, the set of state variables describing how the body is allowed

to move. It has many different subclasses defining a wide variety of types of joints.

We begin by creating a Body to describe the physical properties of our pendulum:

Body::Rigid pendulumBody(MassProperties(1.0, Vec3(0), Inertia(1)));

 A First Example

21

We specify that it has a mass of 1 kg (the first argument), the center of mass is at the body’s

origin (the second argument), and a moment of inertia of 1 kg·m2 around all three axes (the

third argument).

A Body object can also define how the body should be drawn in graphical displays. This has

no effect on the simulation, so it is completely optional. Since we want to show an animation

of the pendulum, we add a decoration to the Body: a sphere of radius 0.1.

pendulumBody.addDecoration(Transform(), DecorativeSphere(0.1));

So far we have not actually added any bodies to our System. We have simply created a Body

instance that defines a certain set of physical and display properties. The next two lines

actually add bodies to the System:

MobilizedBody::Pin pendulum1(matter.Ground(), Transform(Vec3(0)),

 pendulumBody, Transform(Vec3(0, 1, 0)));

MobilizedBody::Pin pendulum2(pendulum1, Transform(Vec3(0)),

 pendulumBody, Transform(Vec3(0, 1, 0)));

The MobilizedBody::Pin constructor adds a new body to the System by creating a pin joint

connecting it to a body that is already in the System. Simbody uses the term mobilizer for

any joint that connects a body to its parent in a multibody tree, so a MobilizedBody always

contains a Body as described above, and its mobilizer, in this case a Pin. A Pin mobilizer has

one generalized coordinate and one generalized speed, which allow it to rotate around a

single axis. Our pendulum consists of two of these linked to each other.

The first constructor argument is the MobilizedBody’s parent; that is, the already-in-System

MobilizedBody relative to which its position is defined. Every SimbodyMatterSubsystem has

a Ground body which is fixed at the origin, and forms the root of the multibody tree. We

specify Ground as the parent for pendulum1, and then specify pendulum1 as the parent for

pendulum2. So the parent body is always closer to ground than is the child body we’re

adding, and every body in the System has a unique parent body.

The third argument is a Body object. Notice that we specify the same Body for both

MobilizedBodies. Remember, a Body is simply a description of a set of physical properties. If

several MobilizedBodies have identical properties, it is fine to use the same Body for all of

them but they aren’t shared; each MobilizedBody gets its own copy of the Body.

Now let’s look at the second and fourth arguments, which are both Transform objects. These

are used to specify the location and orientation of a coordinate frame fixed on each of the

A First Example

22

bodies. The mobilizer we’re using will connect those two frames, permitting some motion

between them that depends on the kind of joint. Let’s look at this more precisely so we can

say exactly how the Transforms define the pin joint mobilizer.

When defining a MobilizedBody, think of the parent as though it were temporarily fixed to

Ground and the new body as though it does all the moving. With that in mind, we’ll call the

frame on the parent the “fixed” frame F, and the frame on the child the “moving” frame M.

We’ll call the parent’s own body frame P, and the new (child) body’s frame B. So the second

argument above locates the F frame with respect to the parent body’s frame P, and the fourth

locates M with respect to the child’s body frame B. You can see these frames in Figure 5, with

F in blue and M in red.

Now we can describe precisely what the Pin mobilizer does: it permits body B to move only

in a manner that keeps the F and M frame origins in the same place, and the z axes of those

frames lined up. The two Transforms tell us where F and M are positioned on their bodies.

In our case, we specified a vector of length 0 for both the fixed frames, so we use the parent

bodies’ origins as the fixed point. For both the moving frames, we specified a vector of length

1 pointing in the y (up) direction, so when both joints are in their neutral positions (that is,

when q=[0, 0]), the pendulum hangs straight down.

PXF

FXM

PXB

Parent body
P

New mobilized
body B

F

B

BXM

P

M

Figure 5. Transforms PXF and BXM are

given as part of a MobilizedBody
constructor.

 A First Example

23

By convention, we denote a transform with the letter X (not T as you might expect). Then we

use two superscripts to denote the “reference” and “target” frames, with the reference frame

on the left: R TX . A transform tells us how the target frame is positioned with respect to the

reference frame. Figure 5 shows the four transforms involved in a MobilizedBody. The

“fixed” transform
P FX and the “moving” transform

B MX are given in the constructor and

don’t change with time. The mobilizer transform
F MX depends on this joint’s generalized

coordinates and tells us where the M frame is currently in relation to the F frame. These are

combined to create the body transform
P BX which relates the position and orientation of

the body to that of its parent:

P B P F F M M BX X X X , where 1
()

M B B M
X X

 .

Note that with this notation composition of transforms always requires that consecutive

superscripts match; if they don’t, you are doing something wrong!

Our System is almost complete at this point, but there’s one more thing we want to add, a

way to visualize the simulation:

 Visualizer viz(system);

 system.addEventReporter(new Visualizer::Reporter(viz, 0.01));

The first line creates a Visualizer for our System. The second adds an event reporter that will

invoke the Visualizer at regular intervals during the simulation. You will recall from the

previous section that an event reporter is a special type of event handler that does not

actually modify the state of the system when it is called. It is there just to observe and report.

Visualizer::Reporter uses a Visualizer to display a movie of the simulation. We ask it to

draw a new frame every 0.01 seconds. That’s measured in simulation time, not real time.

Depending on how demanding your simulation, how fast your computer is, and whether you

are running in debug or optimized mode, one second of simulation time may take more or

less than one second to calculate and display. The Visualizer will take care of controlling the

real time rate at which the frames are displayed; by default it displays 30 frames per second.

In this case our simulation will display in slow motion since 30 frames at 0.01 seconds per is

0.3 seconds of simulated time in a second of real time. A Simbody Visualizer has many

options for controlling what gets displayed and when, and can also be used to interact with

the user during the simulation.

You can find out a lot more about any of these classes by looking in the API reference

documentation, posted on the Simbody project’s Documentation page and also available in

A First Example

24

the doc subdirectory of your Simbody installation (SimbodyAPI.html). Type the name of a

class into the search box or browse the class list.

We’re all done building our System. Now we need to prepare it for simulation:

system.realizeTopology();

This function informs Simbody that you are done constructing the System, and performs lots

of initialization. Don’t worry about the details right now; they usually only matter if you are

writing a new Subsystem class. For the moment, you just need to remember that after you

build a System, you need to call realizeTopology() on it. If you then make any changes to the

System (such as adding another event handler), you need to call realizeTopology() again, and

any State objects you previously created will no longer be valid.

Now we need to get a State for the System. Every System provides a default State which has

been initialized to have the right set of state variables and cache entries for the System. The

default State is created when realizeTopology() is called. The easiest way to create a new

State is simply to make a copy of the default State. That is what we do:

State state = system.getDefaultState();

The default State has all state variables initialized to 0. We could use that as the starting

point for our simulation, but it would make for a very dull simulation. The pendulum would

simply hang there and not do anything. We need to give it some energy to make it move. We

do this by modifying the State to give pendulum2 an initial angular velocity of 5 radians/sec:

pendulum2.setRate(state, 5.0);

The setRate() method is specific to the Pin mobilizer, for which “the rate” is unambiguous

since there is only one degree of freedom and it is angular. (Recall that pendulum2 is a

MobilizedBody::Pin.) We now have a System to simulate, and an initial State to begin the

simulation from. It’s time to do some simulating!

RungeKuttaMersonIntegrator integ(system);

TimeStepper ts(system, integ);

ts.initialize(state);

To understand these lines, we need to discuss two important classes: Integrator and

TimeStepper. An Integrator is an object that knows how to advance the continuous state

variables y by integrating the equations of motion. There are, of course, lots of different

 A Scheduled Event Reporter

25

algorithms for doing that. The best algorithm in a particular case depends on lots of factors:

how smooth the system’s energy landscape is, what level of accuracy you want, whether the

equations are numerically stiff, etc. SimTK therefore provides a choice of different Integrator

subclasses, each implementing a different algorithm. In this case, we have chosen a

RungeKuttaMersonIntegrator, which is a good choice for most mechanical systems. We

could also, for example, have used VerletIntegrator instead to use the velocity Verlet

algorithm; you would use it identically to the RungeKuttaMersonIntegrator shown here.

A TimeStepper takes care of the discrete part of a simulation. It repeatedly invokes the

Integrator to evolve the equations of motion, calls event handlers when events occur, and

notifies the Integrator of any changes made by the event handlers. It takes care of most of

the details of running a simulation for you. All you need to do is tell it what Integrator to use,

and it does the rest.

Now we are all ready to run the simulation. Here is how we do it:

ts.stepTo(50.0);

That’s it! Just tell the TimeStepper what time to advance the simulation to, and it does it.

Before we finish with this example, there is one point worth remarking on. Throughout the

discussion, we have assumed that all quantities were measured in SI units: seconds for time,

kg for mass, etc. You may have wondered how Simbody knew that. The answer is simple: it

didn’t. You are free to use whatever units you want. All that matters is that you use a single,

consistent set of units for all quantities. For this example, we assumed SI units. In a later

chapter, we will see an example that uses a different set of units. The only absolute

requirement is that Newton’s 2nd law force=mass*acceleration must hold in whatever unit

system you choose.

4.2 A Scheduled Event Reporter

Now let’s expand on the previous example. We are going to create a new event reporter. Its

job will be to print out the position of the end of the pendulum at regular intervals during

the simulation. Since the reporting times are fixed in advance, not determined by the

behavior of the system, this is a scheduled event reporter.

Here is the code which implements the event reporter:

class PositionReporter : public PeriodicEventReporter {

A Scheduled Event Reporter

26

public:

 PositionReporter(const MultibodySystem& system, const MobilizedBody& mobod,

 Real reportInterval)

 : PeriodicEventReporter(reportInterval), system(system), mobod(mobod) {}

 void handleEvent(const State& state) const {

 system.realize(state, Stage::Position);

 Vec3 pos = mobod.getBodyOriginLocation(state);

 std::cout<<state.getTime()<<"\t"<<pos[0]<<"\t"<<pos[1]<<std::endl;

 }

private:

 const MultibodySystem& system;

 const MobilizedBody& mobod;

};

We can add this event reporter to our System with the following line:

system.addEventReporter(new PositionReporter(system, pendulum2, 0.1));

Now when you run the program, it prints out the current time and the X and Y coordinates

of the pendulum every 0.1 seconds. Here are the first few lines of the output:

0 0 -2

0.1 0.481219 -1.88155

0.2 0.870604 -1.58657

0.3 1.13856 -1.22146

We output the values as tab delimited text, which makes it easy to load into other programs

for analysis. For example, here is an XY plot which traces out the pendulum’s trajectory over

the course of the simulation:

 A Scheduled Event Reporter

27

Let’s go through the code and see exactly what it is doing. First, we declare our event

reporter to be a subclass of PeriodicEventReporter:

class PositionReporter : public PeriodicEventReporter {

PeriodicEventReporter is a subclass of ScheduledEventReporter which is used for the (very

common) case of a reporter that should be called at fixed intervals throughout the

simulation. We could have subclassed ScheduledEventReporter directly instead; we just

would have needed to implement one additional method.

Now look at the constructor:

PositionReporter(const MultibodySystem& system, const MobilizedBody& mobod,

 Real reportInterval)

: PeriodicEventReporter(reportInterval), system(system), mobod(mobod) {}

This is all very simple. We just store references to the System and MobilizedBody we will be

reporting on, and pass the reporting interval along to the superclass.

Notice that the reporting interval is of type “Real.” This is the type used by SimTK for nearly

all floating point values. The Simbody release always defines Real as double.

All the really interesting things happen in the handleEvent() method. It is called every time

an event occurs (that is, at the time intervals specified to the constructor), and receives a

reference to the current State.

A Triggered Event Reporter

28

We want to print out the position of the pendulum in Cartesian coordinates. That

information is only available if the State has been realized to at least Position stage, so the

very first thing we do is ask the System to realize it:

system.realize(state, Stage::Position);

Now we can ask for the location of the MobilizedBody:

Vec3 pos = mobod.getBodyOriginLocation(state);

Notice that we do not ask the State for this information directly. Instead, we pass the State to

the MobilizedBody and ask it for the location. This is a common pattern. All the State object

knows about is state variables. It does not understand that those variables represent the

rotation angles of a pendulum, and that the pendulum is made up of bodies with positions in

Cartesian space. It is the System that knows these things, so you need to get the System (or

in this case, the MobilizedBody which is a part of the System) to interpret the State and

extract the desired information.

Finally, we print out the desired information:

std::cout<<state.getTime()<<"\t"<<pos[0]<<"\t"<<pos[1]<<std::endl;

We do not bother to print the z component of the position because we have constructed the

pendulum to move entirely in the xy plane.

4.3 A Triggered Event Reporter

Suppose we are especially interested in knowing how high up the pendulum gets on each

swing. We can’t rely on a scheduled event reporter to tell us this: the highest point on the

swing probably won’t exactly correspond to a reporting time, so we will often miss it. We

really want to be guaranteed that a report will occur at exactly the moment when the

pendulum’s height reaches its local maximum. This calls for a triggered event reporter. The

event times are determined by the behavior of the System, not scheduled in advance.

The first thing we need to do is choose an event trigger function. This must be a continuous

function that crosses through zero at the moment when an event should occur. Fortunately,

there is an easy choice we can use: the y component of the body’s velocity. This has exactly

the properties we need. There is a catch, though. We only care about the highest point on the

 A Triggered Event Reporter

29

swing, not the lowest point. The velocity becomes zero at local minima as well as maxima,

but we don’t want the event reporter to be called at those points.

One option would be to have handleEvent() filter out the unwanted events. Each time it was

called, it could calculate the derivative of the event function (in this case, the body’s

acceleration), and use that to decide whether to ignore the event. But there’s a better

solution: Simbody can do this filtering for you. You simply tell it which zero crossings you

are interested in: rising transitions, falling transitions, or both.

Here is the code for the event reporter.

class PositionReporter : public TriggeredEventReporter {

public:

 PositionReporter(const MultibodySystem& system, const MobilizedBody& mobod)

 : TriggeredEventReporter(Stage::Velocity), system(system), mobod(mobod) {

 getTriggerInfo().setTriggerOnRisingSignTransition(false);

 }

 Real getValue(const State& state) const {

 Vec3 vel = mobod.getBodyOriginVelocity(state);

 return vel[1]; // y coordinate

 }

 void handleEvent(const State& state) const {

 system.realize(state, Stage::Position);

 Vec3 pos = mobod.getBodyOriginLocation(state);

 std::cout<<state.getTime()<<"\t"<<pos[0]<<"\t"<<pos[1]<<std::endl;

 }

private:

 const MultibodySystem& system;

 const MobilizedBody& mobod;

};

This time, we subclass TriggeredEventReporter, which should come as no surprise. Take a

look at the constructor:

PositionReporter(const MultibodySystem& system, const MobilizedBody& mobod)

: TriggeredEventReporter(Stage::Velocity), system(system), mobod(mobod) {

Notice the value we pass to the superclass constructor: Stage::Velocity. Event trigger

functions are calculated as part of the process of realizing a State. Each event handler must

specify what stage its trigger function should be calculated after. Since our function depends

on information that is available at Velocity stage, that is the stage we specify.

The constructor also contains the following line:

An Event Handler

30

getTriggerInfo().setTriggerOnRisingSignTransition(false);

This tells Simbody that events should not occur on rising sign transitions (when the trigger

function increases from negative to positive). The default is to trigger on any sign transition;

we only care about falling transitions.

Now look at the getValue() method, which returns the value of the event trigger function:

Real getValue(const State& state) const {

 Vec3 vel = mobod.getBodyOriginVelocity(state);

 return vel[1]; // y coordinate

}

Although this looks straightforward, you might notice something odd about it. We access the

body’s velocity, which is only available once the State has been realized to Velocity stage.

Shouldn’t we therefore call system.realize()?

The answer is no. Remember, this function is called as part of realizing the State. We are

already in the middle of a call to realize(), and all of the Velocity stage cache entries have

already been calculated. In fact, if we inserted a call to realize() here asking to realize the

state to Velocity stage, the result would be an infinite recursion!

The question is a good one, though, and this is an unusual case. At any time other than in

the middle of realizing the State, there is no harm in sticking in an extra call to realize(). If

the State has already been realized to the specified stage, it will simply return without doing

anything.

Conversely, if you forget to realize the State and then ask for information that is not yet

available, it will simply throw an exception. This will usually cause the simulation to

terminate, but at least you discover your mistake right away. This scheme ensures that

expensive calculations are done only by explicit request rather than as hidden side effects

that may have been unintended.

4.4 An Event Handler

So far, we have looked at event reporters: event handlers that can only observe the State, not

modify it. Now let’s create an event handler that actually modifies the State. Suppose that

half way through the simulation, we want to briefly apply a brake to the pendulum that

decreases its angular velocity. Here is the code for an event handler that does this.

class VelocityReducer : public ScheduledEventHandler {

 An Event Handler

31

public:

 VelocityReducer() {

 }

 Real getNextEventTime(const State&, bool includeCurrentTime) const {

 return 25.0;

 }

 void handleEvent(State& state, Real accuracy, bool& shouldTerminate) const {

 state.updU() *= 0.2;

 }

};

We add it to the System with the following line:

system.addEventHandler(new VelocityReducer());

We subclass ScheduledEventHandler. As you would expect, there are also classes called

PeriodicEventHandler and TriggeredEventHandler. All of these classes are nearly identical

to the corresponding event reporter classes. The only difference is the signature of

handleEvent().

ScheduledEventHandler requires us to provide a method that returns the time of the next

event:

Real getNextEventTime(const State&, bool includeCurrentTime) const {

 return 25.0;

}

Since we only want the event handler to be called once, we just return a hardcoded value. In

general, though, the event time could be calculated based on the current State. For example,

PeriodicEventHandler looks at the current time and uses that to determine the next event

time.

Now look at the signature of handleEvent():

void handleEvent(State& state, Real accuracy, bool& shouldTerminate) const {

That’s a little more complicated than for an event reporter. The first thing to notice is that

the State is no longer const. As promised, we are now permitted to modify it.

The next argument conveys the current integration accuracy requirement to the event

handler. The event handler is supposed to reflect some physical process. Any calculations it

does are an intrinsic part of the simulation, and the State it produces is part of the simulated

trajectory. The user may have definite requirements for the accuracy of the trajectory, and

Constraints

32

the event handler is expected to honor them if it performs any approximate computations.

You can ignore this argument in the common case that your event handler does a

(numerically) exact computation as we’re going to do here. If the resulting State is calculated

in an approximate way, the error in it should be less than this value. If the System includes

any constraints, the error in the constraint functions should be less than it.

A State may also provide weights for the individual state variables and constraint functions.

Advanced event handlers should respect those weightings; we won’t cover that here but you

can look in the Doxygen documentation for the State API. See for example the

getUWeights() method.

Finally, there is an argument which is used for output: shouldTerminate. If you want the

time stepper to stop the simulation as a result of this event, set that argument to true. It will

have been set to false before the call so you don’t need to set it to anything if you just want

the simulation to continue after the event has been handled.

The actual implementation of this method is quite simple:

state.updU() *= 0.2;

updU() returns a mutable reference to the State’s u vector, which we multiply by 0.2. There

is also a method called getU(), which returns a const reference to it. This naming convention

is used frequently throughout SimTK: methods that return a const reference begin with

“get”, and methods that return a non-const reference begin with “upd”.

4.5 Constraints

Working in internal coordinates greatly reduces the number of constraints needed for most

systems, but it often cannot eliminate them altogether. Fortunately, Simbody makes it very

easy to add constraints to your System. (It is worth emphasizing here that mobilizers—

internal coordinate joints—are not constraints in Simbody.)

Each constraint is represented by an object of the Constraint class. Subclasses of Constraint

represent different kinds of constraints. Simbody provides a collection of Constraint

subclasses for various common types of constraints: that the distance between two bodies

must remain fixed, that a body can only move in a particular plane, etc.

As an example, let’s add a constraint forcing the end of our pendulum to remain on the

vertical line through the origin. That is, the body in the middle of the pendulum will be free

 Constraints

33

to swing back and forth, but the body at the end will only be able to move up and down.

Adding a Constraint works exactly like adding a MobilizedBody:

Constraint::PointOnLine(matter.Ground(), UnitVec3(0, 1, 0), Vec3(0), pendulum2,

 Vec3(0));

Constraint::PointOnLine is a subclass of Constraint that implements constraints of this sort:

a point on one body is only allowed to move along a line defined by a different body. The first

three arguments specify the line: it is defined in the Ground body’s reference frame, it points

in the y-axis direction (0, 1, 0), and it passes through the origin. The last two arguments

specify the point which must remain on the line: it is at the origin of pendulum2’s reference

frame.

With this single additional line, the behavior of the pendulum changes dramatically. Instead

of moving chaotically, the first mass simply swings back and forth like an ordinary

pendulum, while the second one slides up and down in unison with it.

Naming Conventions

34

5 Some Simbody Basics
Now that you’ve seen an example of using Simbody, we’ll step back and talk in more detail

about some of the basic conventions and low-level features of the Simbody API. Then in the

next chapter we’ll return to a more complicated example.

Simbody uses basic numerical classes from the Simmatrix package, which provides high-

performance, Matlab-like functionality accessible from our C++ API. We will only discuss

the basics here; much more information is available in the API Reference documentation.

There is also a separate document describing the design and implementation of Simmatrix.

See the Simbody home page https://simtk.org/home/simbody, Documents page.

5.1 Naming Conventions

All symbol names generated by Simbody are in the SimTK namespace. In most cases you will

want to include the following line at the top of your source files so that you do not have to

repeat the namespace for every SimTK symbol:

using namespace SimTK;

Alternatively, you can introduce symbols selectively with statements like

using SimTK::Vec3;

Or you can prefix the symbols with SimTK:: when you use them. There are a few symbols,

typically pre-processor macros, that cannot be put in a C++ namespace; those symbols begin

with the six-character string “SimTK_” instead.

Simbody uses mixedUpperAndLowerCase names with a capital letter used to begin a new

word. Class names and constants begin with a CapitalLetter. Method (function) names and

variable names begin with a lowerCaseLetter. Pre-processor macros, except for the initial

SimTK prefix, are written in ALL_CAPS with underscores separating words.

5.2 Numbers and Constants in SimTK

Simbody supports both float (single) and double precision, and is compiled with one of those

as its default, which is then referred to as type Real. So SimTK::Real is simply a typedef

to either the built-in float or double type. The default is double precision and we

https://simtk.org/home/simbody

 Vectors and Matrices

35

recommend you leave it that way, so for our purposes here the SimTK::Real type is always

defined

typedef double Real;

Similarly, Simbody has a type SimTK::Complex which is interchangeable here with the

C++ built-in type std::complex<double>. You probably will not need to use complex

numbers often with Simbody, but they are available if you need them and supported for all

vector and matrix operations.

Simbody pre-defines a number of constants to machine precision; we recommend you use

those rather than defining your own. The most useful ones are: Pi, E (e), Infinity, NaN

(not-a-number), and I (i= 1). Note that the first letter of constants are capitalized and in

the SimTK namespace – these are not preprocessor macros; they have types and addresses.

5.3 Vectors and Matrices

Simbody has two different sets of classes for vector and matrix objects, to deal with small

objects where overhead must be minimized, and with large objects where computation

strategy and memory access must be optimized. You have seen types Vec3 (a 3-vector) and

Vector (a variable-length vector) in the previous example. Here we will discuss those in

more detail. If you want to know more about the design goals and implementation of these

classes, see the Simmatrix document here: https://simtk.org/home/simbody, Documents

tab.

First, there are classes to represent small, fixed size vectors and matrices with zero runtime

overhead: Vec for column vectors, and Mat for matrices1. These classes are templatized

based on size and element type. Synonyms (typedefs) are defined for common

combinations; for example, Vec3 is a synonym for Vec<3,Real>, while Mat22 is a

synonym for Mat<2,2,Real>. You can also create other combinations, such as

Mat<2,10,Real> or Vec<4,std::complex<float>>. You can also nest these objects –

for example, the type Vec<2,Vec3>, called a spatial vector, is useful for combining

rotational and translational quantities into a single object representing a spatial velocity or

1 There is also a Row type that does not normally appear in user programs.

https://simtk.org/home/simbody

Vectors and Matrices

36

spatial force. However, the size must always be determinable at compile time. The in-

memory representation of these small objects is minimal: only the data elements are stored.

Second, there are classes to represent large vectors and matrices whose sizes are determined

at runtime: Vector_ for column vectors and Matrix_ for matrices2. These classes are

templatized based on element type. Types Vector and Matrix are synonyms for

Vector_<Real> and Matrix_<Real>. Again, you can use other element types. In fact,

the element type can even be one of the fixed-size vector or matrix objects. For example,

Vector_<Vec3> is a vector, where each element is itself a three-component vector.

However, it is not permissible to use the variable-size Vector_ or Matrix_ objects as

element types. The in-memory representation of these objects includes, in addition to the

data, an opaque descriptor containing the length and information on how the data is laid

out; the declared objects actually consist only of a pointer (essentially a void*) to the

descriptors. This has many advantages for implementation and binary compatibility, but

makes it difficult to look through these objects in a debugger as you can with the small Vec

and Mat classes.

Here are some sample declarations:

 Vec<3> v; // a 3-vector of Reals

 Vec3 w; // same thing, using abbr.

 Vector b,x; // vectors of doubles

 Matrix M; // mxn matrix of doubles

 Matrix_<Complex> C; // mxn matrix of complex<double>

 Vector_<Vec3> v3; // big vector of 3-vecs

 // This type is a 2-element vector whose elements

 // are 3-vectors. Memory layout and computational

 // efficiency are identical to Vec<6>.

 typedef Vec<2,Vec3> SpatialVec;

5.3.1 Operators

All of these classes support standard mathematical operators like +, -, *, / and C-style

assignment operators like +=, -=, *=, /=. In addition, Simbody overloads the ~ unary

operator to indicate transpose (or more precisely, Hermitian conjugate). That is, for any

vector or matrix x, Simbody’s “~x” has the same meaning as Matlab’s “x’”. For Vec3 there

is also a cross product operator % available so that you can write compact expressions like

2 Again with a normally-hidden RowVector_ type.

 Vectors and Matrices

37

Vec3 w, r; // defined somewhere

Vec3 a = w % (w % r); // a=w x (w x r)

Like Matlab, Simbody requires strict shape conformance for vector and matrix arguments.

So for Vec3 v and w, ~v*w is a dot product (scalar=row*vector) while v*~w is an outer

product (matrix=vector*row), while v*w fails to compile because the arguments are not

conforming. Scalar multiplication acts as expected. Global functions dot(), cross(), and

outer() are available for those who prefer them to using the operators.

There also are versions of many standard math functions that operate on vectors and

matrices: sin(), exp(), sqrt(), etc. and additional functions abs(), min(), max(),

sort(), mean(), median(). These allow many calculations to be written in a very concise

way.

5.3.2 Construction and assignment

All vector and matrix types define a default constructor, that is, a constructor with no

arguments. In Debug mode, the default constructor initializes all elements to NaN. In Release

mode, all elements are left uninitialized.

Constructors are also available for initializing data elements from individual element values,

or by copying compatible objects. Initialization values can be provided in the constructor or

via a pointer (or C array) to values of the appropriate type. Assignment operators are

available for copying whole objects, and for setting single elements, subvectors and

submatrices.

One convention followed by Simbody, which is different from that of most similar systems, is

the treatment of scalar assignment. We follow this convention: (1) when a scalar s is assigned

to a vector, every element of the vector is set to s (this is the typical convention), and (2)

when a scalar s is assigned to a matrix, the diagonal elements of the matrix are set to s while

the off-diagonals are set to zero. Examples:

 Vec3 v;

 Mat22 m;

 Vec3 v(0); // v=(0,0,0)

 v=0; // "

 v=3; // v=(3,3,3)

 Mat33 m(0); // m=(0,0) zero

 m=0 // (0,0)

Vectors and Matrices

38

 Mat33 m(1); // m=(1,0) identity

 m=1; // (0,1)

 Vector b(10); // initial size 10 doubles

 Matrix M(20,10); // initial size 20x10

 b=0; // b=10 zeroes

 M=1; // M=0, except M(i,i)=1, 0<=i<10

This convention is especially apt for matrices, because the matrix resulting from such a

scalar assignment “acts like” that scalar. That is, if you multiply by this matrix the result is

identical to a scalar multiply by the original scalar. Two important cases enabled by this

convention are: (1) setting a matrix to the scalar “1” results in the multiplicative identity

matrix of that shape, and (2) setting a matrix to the scalar “0” results in the additive identity

matrix of that shape. In general, in any operation involving a scalar s and a Matrix or Mat,

the scalar is treated as if it were a conforming matrix whose main diagonal consists of all s’s

with all other elements zero. So Matrix m += s will result in s being added to m’s diagonal,

which is what would happen if s were replaced by diag(s) of the same dimension as m.

m-=1 thus subtracts an identity matrix from m, without touching any of the off-diagonal

elements. Note that for multiply and divide this convention yields the ordinary scalar

multiply and divide operations: m*s (=m*diag(s)) multiplies every element of m by s, while

m/s (=m* (1/s)) divides every element of m by s.

5.3.3 Indexing

Simbody provides 0-based indexing using the [] operator. If a Matrix is modifiable (non-

const), then the indexed element can be modified and that change affects the contents of the

object. The [] operator applied to a Matrix returns a row (specifically, a RowVector

object), which may in turn be indexed to obtain an element in C style. Simbody also permits

indexing using round brackets () yielding identical results to [] for Vector but selecting a

column (Vector) rather than a row when applied to a Matrix. A two-argument round

bracket operator accesses a Matrix element.

 Matrix m; Vector v; …

 v[i] // ref to ith element of v, 0-based

 v(i) // same

 m[i][j] // ref to i,jth element of m, 0-based

 m(i,j) // same, but faster

 m[i] // ref to ith row of m, 0-based

 m(j) // ref to jth column of m, 0-based

 Basic Geometry and Mechanics

39

For the variable-size Matrix and Vector classes only, there are also operators for selecting

sub-vectors and sub-matrices. Like the indexing operators, these return references into the

original object, not copies. Sub-matrices are thus “lvalues” (in C terminology), meaning that

they can appear on the left hand side of an assignment.

 Matrix m; Vector v; …

 v(i,m) // ref to m-element subvector whose 0th

 // element is v’s ith element

 m(i,j,m,n) // ref to mxn submatrix whose (0,0)

 // element is m’s (i,j) element

5.3.4 Output

The C++ operator << is overloaded for all the matrix and vector types so you can look at a

human-readable version of their contents via statements like

Matrix m;

std::cout << “m=” << m;

5.4 Basic Geometry and Mechanics

In this section, we provide information on several basic Simbody classes, all based on the

small Vec and Mat classes described above, that are used to deal with geometrical and

mechanical concepts.

5.4.1 Stations (points)

Stations are simply points which are fixed in a particular reference frame or body (i.e., they

are “stationary” in that frame). They are specified by the position vector which would take

the frame’s origin to the station. A position is represented by a Vec3 type. Simbody does not

provide an explicit Station class; Vec3s are adequate whenever a station is to be specified.

5.4.2 Directions (unit vectors)

Directions are unit vectors, which are Vec3s with the additional property that their lengths

are always 1. Simbody provides a class UnitVec3 which behaves identically to Vec3 in most

respects but restricts the ways in which values can be assigned to ensure that the length is

always 1. This has the practical advantage that you never need to normalize a UnitVec3; it

is guaranteed already to have been normalized. A UnitVec3 can be used in any context or

operator that would normally take a Vec3 (that is, it has an implicit conversion to Vec3)

except where the context would allow the Vec3 to be modified in a way that would change its

Basic Geometry and Mechanics

40

length. In particular, you can apply a Rotation to a UnitVec3 and get a UnitVec3 back

because that operation is known to preserve length.

Note that when you assign a Vec3 to a UnitVec3, normalization will be performed

automatically, whereas assigning a UnitVec3 to a Vec3 or to another UnitVec3 requires

no computation. If you attempt to set a UnitVec3 to zero, you will get NaNs instead.

Some specialized constants and classes are provided for dealing conveniently with the

coordinate axis directions: XAxis, YAxis, ZAxis are the type-safe constants associated

with the CoordinateAxis class which provides useful methods for working with these.

These constants implicitly convert respectively to 0, 1, or 2 when needed so can be used as

indices. There is also a CoordinateDirection class whose constants are -XAxis,

+YAxis, etc. UnitVec3 can provide the equivalent unit vectors.

5.4.3 Rotations

There are many ways to express 3D rotations. Examples are: pitch-roll-yaw, azimuth-

elevation-twist, axis-angle, and quaternions. Many others are in common use, and Simbody

provides extensive support for most of them. However, each way of writing orientation has

its own quirks and complexities, and all of them are equivalent to a 3x3 matrix, called a

rotation matrix (synonyms: orientation matrix, direction cosine matrix). Rotation matrices

have a particularly simple definition and straightforward physical interpretation, and are

very easy to work with. Simbody uses the rotation matrix as a least common denominator,

embodied in a class Rotation. Rotation provides a set of methods which can be used to

construct a rotation matrix from a wide variety of commonly-used rotation schemes. These

are represented internally in objects of type Rotation as an ordinary Mat33, and can be

used wherever a Mat33 is expected, except that construction, assignment, and writable

element access are restricted to ensure that certain properties are maintained. Columns

(rows) of a Rotation have type UnitVec3 (UnitRow3) rather than Vec3 (Row3).

There can be some confusion as to whether to use a rotation matrix or its inverse in a given

context. We use a consistent notation to avoid that confusion, and show here how the

notation corresponds to the physical layout of the SimTK::Rotation object. The symbol R

with left and right superscripts
from toR represents the orientation of the “to” frame (the right

superscript) measured with respect to the “from” frame (the left superscript), like this:

 Basic Geometry and Mechanics

41

GG GG B

x y zR B B B

(Bx is the x-direction unit vector of frame B, with measure numbers expressed in B’s frame,

while the operator
F

 indicates that the measure numbers of some physical quantity are

re-expressed in coordinate frame F.) So the symbol
G B

R should be read “the axes of frame B

expressed in frame G,” or “the orientation of frame B in G,” or just “B in G.” We never use

“R” alone for a rotation matrix and neither should you; that is a recipe for certain disaster.

Instead, always provide the two frames. Using this notation, you can simply match up

superscripts to rotate vectors or compose rotations. When under tight typographical

restrictions, as in source code, we write
G B

R in “monogram” notation as R_GB. Also, since

these are orthogonal, the inverse of a rotation matrix is just its transpose, which serves

simply to swap the superscripts. Use the Simbody “~” operator to indicate rotation

inversion: ~
G B B G
R R . As an example, if you have a rotation

G B
R and a vector Bv expressed

in B, you can re-express that same vector in G like this:
G G B B

Rv v . To go the other

direction, we can write ~
B B G G G B G

R R v v v . As a C++ code fragment, this can be

written:

Rotation R_GB; //orientation of frame B in G

Vec3 v_G; //a vector expressed in G

…

Vec3 v_B = ~R_GB*v_G; //re-express v_G in frame B

Composition of rotations is similarly accomplished by lining up superscripts (subject to

order reversal with the “~” operator). So given
G B

R and
G CR we can get

B C
R as

~
B C B G G C G B G C
R R R R R . Note that the “~” operator has a high precedence like unary

“–” so ~
G B G C
R R is (~)

G B G C
R R , not ~ ()

G B G C
R R .

As is typical for Simbody operations on small quantities, the transpose operator is actually

just a change in point of view and involves no computation or copying of data. That is, the

operations
B G G
R v and ~

G B G
R v are exactly equivalent in both meaning and performance:

the cost is just three inline dot products, with no wasted data copying or subroutine calls.

There is also a Quaternion class you can use; look it up in the API documentation if you

are interested.

Basic Geometry and Mechanics

42

5.4.4 Transforms

Transforms combine a rotation and a position (translation) and are used to define the

configuration (pose) of one frame with respect to another. We represent a frame B’s

configuration with respect to another frame G by giving the measure numbers in G of each of

B’s axes, and the measure numbers in G of the vector from G’s origin point to B’s origin

point, for a total of 4 vectors, which can be interpreted as a 3x3 Rotation (see above)

followed by the origin point location (a Vec3). We call this object a transform (abbreviated

xform) and conceptually augment the axes and origin point to create a 4x4 linear operator

which can be applied to augmented vectors (4th element is 0) or points (4th element is 1), or

composed using matrix multiplication. We define a type Transform which conceptually

represents transforms as follows:

[] [] []

0 0 0 1

G G G G B
x y zG B

B B B p
X

(The notation
G B Go Bo

p p , that is, the vector from the origin of the G frame to the origin of

the B frame.) We use the symbol X for transforms, with superscripts
from toX so

G BX means

“the transform from frame G to frame B,” or “frame B measured from and expressed in

frame G.” As for rotations, never write a transform as just X without indicating frames.

When under tight typographical restrictions, as in source code, we write
G BX in

“monogram” notation as X_GB.

Another way to interpret
G BX is that it represents the operations that must be performed on

G to bring it into alignment with B (a rotation and a translation). Then, as for rotation

matrices described above, we can interpret
G B B CX X as a composition of operators yielding

G CX , and ~
G BX is defined to yield the inverse transform

B GX .

The above transform matrix can be considered a matrix of four columns as shown: three

augmented vectors and an augmented point. An alternate, and entirely equivalent, way to

view this is as a rotation matrix, translation vector, and an extra row:

 Basic Geometry and Mechanics

43

 0 0 0 1

G B G B

G B
R p

X

In our implementation, the physical layout of a Simbody Transform is just the three

columns of the rotation matrix followed immediately in memory by the translation vector,

that is,
3 4

G B G B G B
X R p

 . There is no need for the fourth row to be stored in memory

since it is always the same.

The multiplication operator * is overloaded to work with transforms on Vec3 objects with

the assumption that these are points (stations) to be shifted as well as rotated. That is, they

are treated as though there were a fourth element set to 1. If you only want to apply a

rotation, you can extract the Rotation matrix from the Transform and then apply that. As

an example:

Transform X_GB; //orientation and position of frame B in G

Vec3 v_G; //a vector expressed in G

Vec3 p_G; //location of point measured from G’s origin, expressed

in G

…

Vec3 p_B = ~X_GB*p_G; //point p, now measured from B’s origin, exp.

in B

Vec3 v_B = ~X_GB.R()*v_G; //re-express v_G in frame B, without

shifting

Given a Transform, you can work with it as though it were a 4x4 matrix, or work directly

with the rotation matrix R and translation vector p individually, without having to make

copies (methods x.R() and x.p() are available to provide references to the contained

objects of a transform x). Although a transform defined this way is not orthogonal, its

inverse is easy to apply with no additional calculation. Simbody overloads the normal matrix

transpose operator “~” to recast a Transform to its inverse so that either the transform or

its inverse can be used conveniently in an expression, for example, ~
B C G B G C
X X X .

5.4.5 Inertia and MassProperties

The Simbody Inertia class is a 3x3 symmetric matrix. The class provides some convenient

constructors and methods for shifting to and from a body’s center of mass. Simbody uses

Available Simbody Numerical Methods

44

this class for specifying body inertia properties. There is also a UnitInertia class which

represents inertia per unit mass (this is sometimes called a “gyration” matrix); multiplying a

UnitInertia by a mass yields an Inertia. The MassProperties class combines a mass,

center of mass location, and inertia to provide the complete mass properties for a rigid body.

If you want to see what you can do with these classes, look them up in the Doxygen-

generated API reference documentation available at https://simtk.org/home/simbody,

Documents tab.

5.5 Available Simbody Numerical Methods

Simbody uses many advanced numerical methods, and these are available for direct use in

your programs if you need them. We call the collection of numerical methods “Simmath”.

Some of the most commonly used are:

 Linear algebra (various object-oriented factorization and eigenvalue classes, as well

as direct access to Lapack and Blas if needed).

 Optimization (constrained and unconstrained), see Optimizer and subclasses.

 Numerical integration (see Integrator class and subclasses)

 Numerical differentiation (see Differentiator class)

 Random number generation (see Random class)

 Polynomial root finding (see PolynomialRootFinder class)

 Spline fitting (see Spline_<T> and SplineFitter classes)

For more information, see the Simmath User’s Guide at https://simtk.org/home/simbody,

Documents page. Detailed information is provided in the Doxygen-generated API Reference

that describes individual classes and methods, also on the Documents page.

In the next chapter we’ll see an example of using the Optimizer classes.

5.6 Some other Simbody classes and utilities

Simbody contains a collection of utility classes that have proven useful when writing

programs that use the Simbody API. You can read about them in the API reference

documentation mentioned above. Here we’ll give a brief description and where to look for

https://simtk.org/home/simbody
https://simtk.org/home/simbody

 Some other Simbody classes and utilities

45

more information (where there are class or function names you can type them into the

search box in the API documentation).

 Parallel execution and threading: ParallelExecutor, Parallel2DExecutor,

ParallelWorkQueue, AtomicInteger, ThreadLocal<T>, threadCpuTime()

function

 Predefined constants at high precision: see “Predefined Constants” under “Modules”

in the API documentation

 Contact classes: see contact example programs in the Simbody examples directory.

Also, Contact, ContactGeometry, ContactSurface,

ContactTrackerSubsystem, CompliantContactSubsystem

 Geometry: DecorativeGeometry, ContactGeometry, PolygonalMesh

 Some useful solvers: LocalEnergyMinimizer, Assembler (inverse kinematics,

motion tracking), ObservedPointFitter, project() method of System class.

 Platform-independent file name handling: Pathname

 Platform-independent handling of plug-in libraries: Plugin

 String handling: String

 Reading and writing Xml files: Xml and related classes

 Timing and miscellaneous inline utilities: realTime(), cpuTime(), step(),

clamp(), square(), cube(), sign(), isFinite(), isInf(), isNaN(), elliptic

integrals, various bit functions: see Global Functions in the SimTK namespace under

“Modules” in the API documentation.

6 Complex Example: A

Protein Simulation

In chapter 4 we simulated a very simple system with only two degrees of freedom. Now let’s

make an enormous jump in complexity, and simulate an entire protein. This would be

difficult with just Simbody, but the Molmodel API exists specifically for this purpose and

makes it very easy to create Simbody models of molecules.

Even if you are not using Molmodel and have no interest in molecules, you should still take a

look at this example since most of what it does involves only the Simbody API. Molmodel is

just a modeling layer that helps build Simbody models for a specific class of physical system;

any use of Simbody will begin with a modeling phase of some sort.

6.1 Simulating a Protein

The following program loads a protein structure from a PDB file, constructs a System

representing it, and simulates its behavior for 10 ps.

#include "Molmodel.h"

using namespace SimTK;

int main() {

 try {

 // Load the PDB file and construct the system.

 CompoundSystem system;

 SimbodyMatterSubsystem matter(system);

 DecorationSubsystem decoration(system);

 DuMMForceFieldSubsystem forces(system);

 forces.loadAmber99Parameters();

 PDBReader pdb("1PPT.pdb");

 pdb.createCompounds(system);

 system.modelCompounds();

 // Adjust the temperature periodically.

 system.addEventHandler(new VelocityRescalingThermostat(system, 293.15, 0.1));

 // Arrange for visualization.

 system.addEventReporter(new Visualizer::Reporter(system, 0.025));

 // Initialize and get the default state for the simulation.

 State state = system.realizeTopology();

Simulating a Protein

48

 pdb.createState(system, state);

 LocalEnergyMinimizer::minimizeEnergy(system, state, 15.0);

 // Simulate it.

 VerletIntegrator integ(system);

 integ.setAccuracy(1e-2);

 TimeStepper ts(system, integ);

 ts.initialize(state);

 ts.stepTo(10.0);

 } catch (const std::exception& e) {

 std::cout << “Error: “ << e.what() << std::endl;

 return 1;

 }

}

When you run this program, a Visualizer window should appear and (after some delay for

building the model and doing energy minimization) display the protein:

Before we go through the code in detail, let’s take a moment to consider how one goes about

modeling a molecule. In previous chapters, we have described multibody systems in terms of

rigid bodies connected by joints. In molecular simulations, it’s more natural to use a

different language. One thinks of molecules, which are made up of atoms connected by

covalent bonds. What is the relationship between these two descriptions?

 Simulating a Protein

49

One answer would be to simply equate them. You could say that each atom is a rigid body,

and each bond is a joint. That is certainly an option, but it isn’t the only one, and it often isn’t

the best one.

When simulating a macromolecule, one usually constrains the bond lengths to remain fixed,

and often some of the bond angles as well. This produces clusters of atoms that are

completely immobile with respect to each other. If you treat each of these clusters as a rigid

body, the system will have many fewer bodies than atoms. This results in a simpler system

that is easier to simulate.

The Molmodel interface to Simbody lets you work with either description, and translate

from one to the other. It describes molecules in terms of Compounds. A Compound is a set

of atoms covalently bonded to each other: a molecule or a piece of a molecule. A Compound

may be built up hierarchically out of other compounds. For example, a protein is a single

Compound, but each amino acid residue it contains is itself a Compound.

After you create one or more Compounds, you add them to a CompoundSystem, which is a

subclass of MultibodySystem. The CompoundSystem examines the Compounds and

generates an appropriate set of MobilizedBody objects based on them. You can tell it which

bonds and angles should be constrained, and it automatically figures out what sets of atoms

form rigid bodies and what degrees of freedom they have.

Now let’s look at the code. Notice that we include Molmodel.h instead of Simbody.h. This

gets us the molecular modeling extensions we want, and also includes all of Simbody as well.

We begin by creating our CompoundSystem and Subsystems:

CompoundSystem system;

SimbodyMatterSubsystem matter(system);

DecorationSubsystem decoration(system);

DuMMForceFieldSubsystem forces(system);

There are two new Subsystems that we haven’t seen before. DecorationSubsystem lets you

add arbitrary decorations to a System to control how it is visualized. When

CompoundSystem looks through the Compounds and creates MobilizedBody objects from

them, it also creates a set of decorations to draw the molecules in a standard way.

Decorations never affect the behavior of a simulation. DuMMForceFieldSubsystem provides

a standard molecular dynamics force field. It has built in support for the Amber99 force field

parameters, which we load by calling

Simulating a Protein

50

forces.loadAmber99Parameters();

If you want to use a different set of parameters, you can load them from a file by calling

populateFromTinkerParameterFile() instead. It also uses a GBSA implicit solvation model to

represent the effect of water. (It doesn’t make sense to use explicit solvation for a reduced-

coordinate molecular model, except possibly for a few localized waters.)

Now we need to create a set of Compound objects and tell the CompoundSystem to create

MobilizedBody objects from them. We could create them directly, but in this example we use

a different method: we do it by loading a PDB file:

PDBReader pdb("1PPT.pdb");

pdb.createCompounds(system);

system.modelCompounds();

The argument to the PDBReader constructor is the name or path of the file to read. In this

example, we use the 1PPT structure downloaded from http://www.pdb.org. This is a small,

36 residue protein. When we call createCompounds(), it creates all the necessary

Compounds and adds them to the CompoundSystem. Finally, we call modelCompounds(),

which causes the CompoundSystem to generate MobilizedBodies based on the Compounds

that have been added.

Next we add an event handler to the System:

System.addEventHandler(new VelocityRescalingThermostat(system, 293.15, 0.1));

Molecular simulations are usually performed at constant temperature, so we need a

thermostat to maintain the temperature. VelocityRescalingThermostat does this by

periodically rescaling all of the velocities in the System. We tell it to maintain a temperature

of 293.15 K (20C), and to rescale the velocities every 0.1 ps. In the previous chapter we used

SI units. In this chapter we use a different set of units known as MD units that measure

length in nm, mass in Daltons, time in ps, and energy in kJ/mol. Unlike Simbody, which is

units-agnostic, the Molmodel interface requires MD units. SimTK provides predefined

constants that give the values of various physical constants in both systems of units.

We also add a Visualizer::Reporter to show a movie of our simulation, and ask it to show a

frame every 0.025 ps. Here we’re using a constructor that tells the Reporter to allocate its

own Visualizer for the System, with all-default options:

system.addEventReporter(new Visualizer::Reporter(system, 0.025));

http://www.pdb.org/

 Simulating a Protein

51

The default background for a CompoundSystem is plain white; that’s different from a

MultibodySystem where the default background is a ground plane with a blue sky.

After creating the System, we need to create an initial State. We can get an appropriate State

object from the return value of the realizeTopology() method; however, that will be some

simple, regular configuration (such as fully extended), not the molecule’s configuration as

found in the pdb file. Once again we turn to the PDBReader:

State state = system.realizeTopology();

pdb.createState(system, state);

This method figures out the values of all generalized coordinates that produce a best fit to

the coordinates read from the PDB file and sets the generalized coordinates (position states

q) in the State object.

We could use this State as the starting point for our simulation, but that usually is not a good

idea. PDB structures have significant uncertainty in them, and may not be at a local

minimum of the particular potential function we are using; some atoms may even overlap. If

we started the simulation from this State, the protein might experience very large forces that

would disrupt its structure. We therefore perform a local energy minimization to get a better

starting State:

LocalEnergyMinimizer::minimizeEnergy(system, state, 15.0);

We now are ready to perform our simulation. This works exactly as it did in the last chapter,

although we’re using a different Integrator: we create a VerletIntegrator and TimeStepper,

initialize it, and tell it to step to 10 ps. There is only one line that is different:

integ.setAccuracy(1e-2);

Biomolecular systems can usually be integrated at fairly low accuracy. We are simulating a

large, chaotic system at constant temperature, so small errors in the integration have very

little effect on the long time behavior of the simulation. We therefore tell the Integrator to

use lower accuracy than the default. This allows it to take larger time steps, which makes the

simulation faster.

Accelerating Molmodel with OpenMM

52

6.2 Accelerating Molmodel with OpenMM

If you have OpenMM installed and operating on a hardware-accelerated platform (e.g.

CUDA) on your computer, you can easily use it to accelerate the protein simulation we did

above. Simply insert the lines:

forces.setUseOpenMMAcceleration(true);

forces.setTraceOpenMM(true);

before the call to realizeTopology(). Only the first line is required; the second is very useful

though to verify that OpenMM is actually being used and to debug the problem if not—it

sends helpful trace output to stdout (cout). Note that if you did not install SimTK in its

standard location, the environment variable SimTK_INSTALL_DIR must be set so that the

OpenMM plugin can be located (it is in $SimTK_INSTALL_DIR/lib/plugins).

For problems with OpenMM installation, go to https://simtk.org/home/openmm. Note that

acceleration requires supported hardware, appropriate drivers, and an OpenMM 3.0

installation.

6.3 Vector Arithmetic: Calculating Radius of Gyration

Watching a movie of a protein is fine as far as it goes, but you generally want to analyze your

simulations in a more quantitative way. In this section, we will expand the previous example

to monitor the radius of gyration of the protein over the course of the simulation. The radius

of gyration is defined by

RG
1

N
ri ravg

2

i1

N

where N is the number of atoms, ri is the location of the i’th atom, and ravg is the average

location of all atoms. In this example, we will calculate it based only on the alpha carbon of

each residue.

Before looking at the code, this might be a good time to say something about matrix and

vector math in SimTK. The Vec3 class has already appeared a few times in the earlier

examples, but I didn’t comment on it, since it was generally obvious from the context how it

was being used. This example will require more significant vector math.

Actually, SimTK has two different sets of classes for vector math. First, there are classes to

represent small, fixed size vectors and matrices: Vec for column vectors, Row for row

https://simtk.org/home/openmm

 Vector Arithmetic: Calculating Radius of Gyration

53

vectors, and Mat for Matrices. These classes are templatized based on size and element type.

Synonyms are defined for common combinations; for example, Vec3 is a synonym for

Vec<3,Real>, while Mat22 is a synonym for Mat<2,2,Real>. You can also create other

combinations, such as Mat<2,10,Real> or Vec<4,Complex>.

Second, there are classes to represent large vectors and matrices whose sizes are determined

at runtime: Vector_ for column vectors, RowVector_ for row vectors, and Matrix_ for

matrices. These classes are templatized based on element type only. Vector, RowVector, and

Matrix are synonyms for Vector_<Real>, RowVector_<Real>, and Matrix_<Real>,

respectively. Again, you can use other element types. In fact, the element type can even be a

fixed-size vector or matrix. For example, Vector_<Vec3> is a variable-length vector, where

each element is itself a three-component vector.

All of these classes support standard mathematical operators like +, -, and *. The ~ operator

performs a transpose (or more precisely, Hermitian conjugate which is the same as

transpose for real numbers). There also are versions of many standard math functions that

operate on vectors and matrices: sin(), exp(), sqrt(), abs(), sum(), mean(), etc. These allow

many calculations to be written in a very concise way.

Here is the code for the event reporter that monitors the radius of gyration.

class RadiusReporter : public PeriodicEventReporter {

public:

 RadiusReporter(const CompoundSystem& system, const Compound& compound,

 Real interval)

 : PeriodicEventReporter(interval), system(system), compound(compound) {

 for (Compound::AtomIndex i = Compound::AtomIndex(0); i <

 compound.getNAtoms(); ++i) {

 std::string name = compound.getAtomName(i);

 if (name.size() > 3 && name.substr(name.size()-3) == "/CA")

 atoms.push_back(i);

 }

 }

 void handleEvent(const State& state) const {

 system.realize(state, Stage::Position);

 Vector_<Vec3> pos(atoms.size());

 for (int i = 0; i < atoms.size(); ++i)

 pos[i] = compound.calcAtomLocationInGroundFrame(state, atoms[i]);

 pos -= mean(pos);

 Real radius = std::sqrt(~pos*pos/atoms.size());

 std::cout<<state.getTime()<<"\t"<<radius<<std::endl;

 }

Vector Arithmetic: Calculating Radius of Gyration

54

private:

 const CompoundSystem& system;

 const Compound& compound;

 std::vector<Compound::AtomIndex> atoms;

};

We add it to the System with the following line:

system.addEventReporter(new RadiusReporter(system,

 system.getCompound(Compound::Index(0)), 0.1));

The constructor arguments are the CompoundSystem we are working with, the Compound

for which to calculate RG, and the reporting interval.

The constructor builds a list of all the atoms that will be used in the calculation. It does this

by looping over all atoms in the Compound and checking the name of each one. If the name

ends in “/CA”, it is the alpha carbon of some residue, so we add it to the list.

Now look at handleEvent(). Since we will be working with the locations of atoms in Cartesian

coordinates, we first realize the State to Position stage. We then look up the location of each

atom:

Vector_<Vec3> pos(atoms.size());

for (int i = 0; i < atoms.size(); ++i)

 pos[i] = compound.calcAtomLocationInGroundFrame(state, atoms[i]);

We store the locations in a Vector_<Vec3>; that is, a vector of which each element is itself a

three-component vector.

We now need to calculate RG. Since it involves a sum over ri-ravg, we first subtract the

average atom position from each one:

pos -= mean(pos);

We now can do the rest of the calculation in a single line:

Real radius = std::sqrt(~pos*pos/atoms.size());

That line may seem a bit confusing at first. How does it represent the entire calculation for

radius of gyration? Let’s look at it more closely, particularly the expression ~pos*pos.

Remember that ~ is the transpose operator, so this expression is simply the dot product of

pos with itself (you can also write dot(pos,pos) if you prefer). It multiplies each element by

itself, and adds them up. But each element of pos is itself a Vec3. The ~ operator transposes

 Using an Optimizer: RMS Distance from Native

55

these sub-vectors along with the parent vector, so we are actually taking the dot product of

each Vec3 with itself (yielding the absolute value squared), then adding all of them up.

Finally we divide by the number of atoms and take the square root to yield RG: not bad for a

single line of code!

Here is a graph of the radius of gyration over the course of the simulation. As you can see, it

has very little variation, indicating that the protein is stable.

Before we leave this example, I should point out that I cheated a bit at one point. I assumed

the System contained only one top level Compound, and simply called

getCompound(Compound::Index(0)) to look it up. This is not always a good assumption. If

the PDB file contained multiple protein chains, each one would be a separate Compound. I

really should have asked the System how many Compounds there were, and looped over all

of them. But I happened to know that the particular PDB file I was working with only

contained one chain, and making the code more general would have resulted in an example

that was more complicated but no more educational. For real programs, though, you should

handle this more robustly.

6.4 Using an Optimizer: RMS Distance from Native

In this section we will measure a different quantity over the course of our simulation: the

root-mean-square distance (RMSD) from the native structure. This is defined as

Using an Optimizer: RMS Distance from Native

56

RMSD
1

N
ri ri

0
2

i1

N

where ri is the position of the i’th atom at the current time, and ri
0 is the position of that

atom in the native structure.

At first, this might seem like a trivial modification to the previous example, but there’s a

catch. Over time, the molecule may drift or rotate away from its starting position. We don’t

care about that, and we don’t want it to cause the RMSD to change. We only care about

conformational changes in the molecule. We therefore need to align the two states before

calculating the RMSD. That is, out of all possible translations and rotations that could be

applied to the molecule, we want to find the one that minimizes the RMSD.

SimTK provides a tool for solving problems of this sort: the Optimizer class. To use it, you

define a function of the form

y f (x)

where x is a vector of parameters, and f(x) is a real valued function of those parameters.

Optimizer searches for a set of values for the parameters x at which y is a local minimum.

You can also impose constraints on the allowed parameter values.

You define the function by creating an object which subclasses OptimizerSystem. Here is an

OptimizerSystem that calculates the RMSD between two structures.

class RMSDFunction : public OptimizerSystem {

public:

 RMSDFunction(const Vector_<Vec3>& pos1, const Vector_<Vec3>& pos2)

 : OptimizerSystem(6), pos1(pos1), pos2(pos2) {}

 int objectiveFunc(const Vector& params, bool new_params,

 Real& f) const {

 Rotation R;

 R.setRotationToBodyFixedXYZ(Vec3(params[0], params[1], params[2]));

 Transform X(R, Vec3(params[3], params[4], params[5]));

 Vector_<Vec3> diff = X*pos1-pos2;

 f = std::sqrt(~diff*diff/pos1.size());

 return 0;

 }

private:

 const Vector_<Vec3>& pos1;

 const Vector_<Vec3>& pos2;

};

 Using an Optimizer: RMS Distance from Native

57

The arguments to the constructor contain the atom positions in the two States we want to

compare. We pass 6 to the superclass constructor to tell it that our function has six

parameters to be optimized: three rotation angles and three translation distances.

Now look at objectiveFunc() which calculates the function to be minimized. Each time it is

called, it receives a vector of parameter values. We choose to interpret them as a

transformation X to be applied to pos1. We therefore use them to create a Transform object,

which combines a rotation (represented by a Rotation object R) and a translation

(represented by a Vec3):

Rotation R;

R.setRotationToBodyFixedXYZ(Vec3(params[0], params[1], params[2]));

Transform X(R, Vec3(params[3], params[4], params[5]));

We apply it to pos1, take the difference between that and pos2, and calculate the RMSD

exactly as we calculated the radius of gyration in the previous section:

Vector_<Vec3> diff = X*pos1-pos2;

f = std::sqrt(~diff*diff/pos1.size());

An OptimizerSystem can implement other methods as well. If you know how to calculate the

gradient or Jacobian of the function analytically, you can provide methods to calculate them.

This can speed up the optimization quite a bit, especially when there are many parameters.

If you want to apply constraints to the parameters, you can provide a method to evaluate the

constraint errors. But for simple cases like this one, a single method is all we need.

Now we are ready to write our event reporter. Here it is.

class RMSDReporter : public PeriodicEventReporter {

public:

 RMSDReporter(const CompoundSystem& system, const Compound& compound,

 Real interval)

 : PeriodicEventReporter(interval), system(system), compound(compound) {

 for (Compound::AtomIndex i = Compound::AtomIndex(0);

 i < compound.getNAtoms(); ++i) {

 std::string name = compound.getAtomName(i);

 if (name.size() > 3 && name.substr(name.size()-3) == "/CA")

 atoms.push_back(i);

 }

 }

 void setReferenceState(const State& state) {

 system.realize(state, Stage::Position);

Using an Optimizer: RMS Distance from Native

58

 refPos.resize(atoms.size());

 for (int i = 0; i < atoms.size(); ++i)

 refPos[i] = compound.calcAtomLocationInGroundFrame(state, atoms[i]);

 }

 void handleEvent(const State& state) const {

 system.realize(state, Stage::Position);

 Vector_<Vec3> pos(atoms.size());

 for (int i = 0; i < atoms.size(); ++i)

 pos[i] = compound.calcAtomLocationInGroundFrame(state, atoms[i]);

 RMSDFunction func(refPos, pos);

 Optimizer opt(func);

 opt.useNumericalGradient(true);

 opt.useNumericalJacobian(true);

 Vector parameters(6, 0.0);

 opt.optimize(parameters);

 Real rmsd;

 func.objectiveFunc(parameters, true, rmsd);

 std::cout<<state.getTime()<<"\t"<<rmsd<<std::endl;

 }

private:

 const CompoundSystem& system;

 const Compound& compound;

 Vector_<Vec3> refPos;

 std::vector<Compound::AtomIndex> atoms;

};

The constructor is identical to the one in the previous example. After the System has been

created and the State representing the native structure has been created, we must call

setReferenceState(). This looks up the position of every atom and stores them for later use.

Now look at handleEvent(). The first few lines should look very familiar. Once again, we

realize the State and look up the position of every atom. We then create an instance of our

OptimizerFunction, passing to it the two vectors of atomic positions we want to compare:

RMSDFunction func(refPos, pos);

We then create and initialize an Optimizer:

Optimizer opt(func);

opt.useNumericalGradient(true);

opt.useNumericalJacobian(true);

Those last two lines tell the Optimizer how to calculate the gradient and Jacobian of the

objective function. By default, it calls methods on the OptimizerSystem to calculate them.

 Using an Optimizer: RMS Distance from Native

59

Since we have not provided any such methods, we tell it to calculate them from numerical

differences instead.

We now create a vector of parameter values and invoke the Optimizer:

Vector parameters(6, 0.0);

opt.optimize(parameters);

The constructor arguments tell it to create a vector of length 6, and to initialize all elements

to 0. On entry, this vector contains the initial parameter values from which to search for a

local minimum. On exit, it contains the values that optimize the objective function.

We now have the optimal parameter values, but we really want to know the corresponding

RMSD. That requires one more call to the RMSDFunction:

Real rmsd;

func.objectiveFunc(parameters, true, rmsd);

At the time we add the RMSDReporter to our System, we don’t yet have a State representing

the native structure, so we need to keep a reference to it:

RMSDReporter* rmsd = new RMSDReporter(system,

 system.getCompound(Compound::Index(0)), 0.1);

system.addEventReporter(rmsd);

Then, after we call createState() on the PDBReader to find the native structure, we can pass

it on to the reporter:

rmsd->setReferenceState(state);

Here is a graph of the RMSD over the course of the simulation:

Using an Optimizer: RMS Distance from Native

60

It fluctuates up and down, but overall is fairly flat. This again shows that the protein is stable

and is not drifting away from the native structure.

Before leaving this example, I should mention that using an Optimizer is not actually the

most efficient way to solve this particular problem. Finding the optimal alignment between

two sets of points can be done analytically, which is faster than doing an iterative

optimization. But of course, the real goal of this example was to show how to use the

Optimizer class, which is useful for solving a wide variety of problems.

