
GStreamer Application Development Manual (0.10.23.1)

Wim Taymans

Steve Baker

Andy Wingo

Ronald S. Bultje

Stefan Kost

GStreamer Application Development Manual (0.10.23.1)
by Wim Taymans, Steve Baker, Andy Wingo, Ronald S. Bultje, and Stefan Kost

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License,

v1.0 or later (the latest version is presently available at http://www.opencontent.org/opl.shtml1).

Table of Contents
Foreword.. v

Introduction ..vii

Who should read this manual? ...vii
Preliminary reading ..vii
Structure of this manual ...vii

I. About GStreamer ..1

1. What is GStreamer?...1
2. Design principles..3

Clean and powerful..3
Object oriented ..3
Extensible...3
Allow binary-only plugins ..3
High performance...3
Clean core/plugins separation ...4
Provide a framework for codec experimentation ..4

3. Foundations ..5
Elements...5
Pads...5
Bins and pipelines...5

II. Building an Application...7

4. Initializing GStreamer ...7
Simple initialization ...7
The GOption interface..7

5. Elements ..9
What are elements? ..9
Creating a GstElement ..10
Using an element as a GObject ..11
More about element factories..12
Linking elements ..13
Element States ...14

6. Bins ...17
What are bins...17
Creating a bin ..17
Custom bins...18

7. Bus ..21
How to use a bus ..21
Message types ...23

8. Pads and capabilities ...25
Pads...25
Capabilities of a pad...27
What capabilities are used for...29
Ghost pads ...31

9. Buffers and Events ...35
Buffers ..35
Events ...35

10. Your first application ...37
Hello world..37
Compiling and Running helloworld.c...40
Conclusion ...40

iii

III. Advanced GStreamer concepts..41

11. Position tracking and seeking ..41
Querying: getting the position or length of a stream41
Events: seeking (and more) ...42

12. Metadata..43
Metadata reading..43
Tag writing...43

13. Interfaces..45
The URI interface..45
The Mixer interface...45
The Tuner interface...45
The Color Balance interface...45
The Property Probe interface ..46
The X Overlay interface ...46

14. Clocks in GStreamer ..47
Clock providers...47
Clock slaves ...47

15. Dynamic Controllable Parameters...49
Getting Started ..49
Setting up parameter control ..49

16. Threads ..51
When would you want to force a thread?...51
Scheduling in GStreamer ..52

17. Autoplugging..53
MIME-types as a way to identity streams...53
Media stream type detection...54
Plugging together dynamic pipelines..55

18. Pipeline manipulation ...61
Data probing..61
Manually adding or removing data from/to a pipeline.............................63
Embedding static elements in your application...65

IV. Higher-level interfaces for GStreamer applications..67

19. Components ..67
Playbin..67
Decodebin ..68

20. XML in GStreamer...71
Turning GstElements into XML..71
Loading a GstElement from an XML file ..72
Adding custom XML tags into the core XML data......................................72

V. Appendices ...75

21. Things to check when writing an application..75
Good programming habits..75
Debugging ...75
Conversion plugins ..76
Utility applications provided with GStreamer ..76

22. Porting 0.8 applications to 0.10 ..77
List of changes...77

23. Integration ...79
Linux and UNIX-like operating systems ..79
GNOME desktop ..79
KDE desktop ...80
OS X ..81
Windows ..81

24. Licensing advisory ...83
How to license the applications you build with GStreamer......................83

25. Quotes from the Developers...85

iv

Foreword

GStreamer is an extremely powerful and versatile framework for creating stream-
ing media applications. Many of the virtues of the GStreamer framework come from
its modularity: GStreamer can seamlessly incorporate new plugin modules. But be-
cause modularity and power often come at a cost of greater complexity, writing new
applications is not always easy.

This guide is intended to help you understand the GStreamer framework (version
0.10.23.1) so you can develop applications based on it. The first chapters will focus
on development of a simple audio player, with much effort going into helping you
understand GStreamer concepts. Later chapters will go into more advanced topics
related to media playback, but also at other forms of media processing (capture, edit-
ing, etc.).

v

Foreword

vi

Introduction

Who should read this manual?
This book is about GStreamer from an application developer’s point of view; it de-
scribes how towrite a GStreamer application using the GStreamer libraries and tools.
For an explanation about writing plugins, we suggest the Plugin Writers Guide1.

Also check out the other documentation available on the GStreamerweb site2.

Preliminary reading
In order to understand this manual, you need to have a basic understanding of the C
language.

Since GStreamer adheres to the GObject programming model, this guide also as-
sumes that you understand the basics of GObject3 and glib4 programming. Especially,

• GObject instantiation

• GObject properties (set/get)

• GObject casting

• GObject referecing/dereferencing

• glib memory management

• glib signals and callbacks

• glib main loop

Structure of this manual
To help you navigate through this guide, it is divided into several large parts. Each
part addresses a particular broad topic concerning GStreamer appliction develop-
ment. The parts of this guide are laid out in the following order:

Part I in GStreamer Application Development Manual (0.10.23.1) gives you an
overview of GStreamer, it’s design principles and foundations.

Part II in GStreamer Application Development Manual (0.10.23.1) covers the basics of
GStreamer application programming. At the end of this part, you should be able
to build your own audio player using GStreamer

In Part III in GStreamer Application Development Manual (0.10.23.1), we will move on
to advanced subjects which make GStreamer stand out of its competitors. We will
discuss application-pipeline interaction using dynamic parameters and interfaces,
we will discuss threading and threaded pipelines, scheduling and clocks (and syn-
chronization). Most of those topics are not just there to introduce you to their API,
but primarily to give a deeper insight in solving application programming problems
with GStreamer and understanding their concepts.

Next, in Part IV in GStreamer Application Development Manual (0.10.23.1), we will go
into higher-level programming APIs for GStreamer. You don’t exactly need to know
all the details from the previous parts to understand this, but you will need to under-
stand basic GStreamer concepts nevertheless. We will, amongst others, discuss XML,
playbin and autopluggers.

vii

Introduction

Finally in Part V in GStreamer Application Development Manual (0.10.23.1), you
will find some random information on integrating with GNOME, KDE, OS X
or Windows, some debugging help and general tips to improve and simplify
GStreamer programming.

Notes
1. http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/index.html

2. http://gstreamer.freedesktop.org/documentation/

3. http://library.gnome.org/devel/gobject/stable/

4. http://library.gnome.org/devel/glib/stable/

viii

Chapter 1. What is GStreamer?

GStreamer is a framework for creating streaming media applications. The funda-
mental design comes from the video pipeline at Oregon Graduate Institute, as well
as some ideas from DirectShow.

GStreamer’s development framework makes it possible to write any type of stream-
ingmultimedia application. The GStreamer framework is designed tomake it easy to
write applications that handle audio or video or both. It isn’t restricted to audio and
video, and can process any kind of data flow. The pipeline design is made to have
little overhead above what the applied filters induce. This makes GStreamer a good
framework for designing even high-end audio applications which put high demands
on latency.

One of the the most obvious uses of GStreamer is using it to build a media player.
GStreamer already includes components for building a media player that can sup-
port a very wide variety of formats, including MP3, Ogg/Vorbis, MPEG-1/2, AVI,
Quicktime, mod, and more. GStreamer, however, is much more than just another
media player. Its main advantages are that the pluggable components can be mixed
and matched into arbitrary pipelines so that it’s possible to write a full-fledged video
or audio editing application.

The framework is based on plugins that will provide the various codec and other
functionality. The plugins can be linked and arranged in a pipeline. This pipeline
defines the flow of the data. Pipelines can also be edited with a GUI editor and saved
as XML so that pipeline libraries can be made with a minimum of effort.

The GStreamer core function is to provide a framework for plugins, data flow and
media type handling/negotiation. It also provides an API to write applications using
the various plugins.

Specifically, GStreamer provides

• an API for multimedia applications

• a plugin architecture

• a pipeline architecture

• a mechanism for media type handling/negotiation

• over 150 plug-ins

• a set of tools

GStreamer plug-ins could be classified into

• protocols handling

• sources: for audio and video (involves protocol plugins)

• formats: parsers, formaters, muxers, demuxers, metadata, subtitles

• codecs: coders and decoders

• filters: converters, mixers, effects, ...

• sinks: for audio and video (involves protocol plugins)

1

Chapter 1. What is GStreamer?

Figure 1-1. Gstreamer overview

GStreamer is packaged into

• gstreamer: the core package

• gst-plugins-base: an essential exemplary set of elements

• gst-plugins-good: a set of good-quality plug-ins under LGPL

• gst-plugins-ugly: a set of good-quality plug-ins that might pose distribution prob-
lems

• gst-plugins-bad: a set of plug-ins that need more quality

• gst-python: the python bindings

• a few others packages

2

Chapter 2. Design principles

Clean and powerful
GStreamer provides a clean interface to:

• The application programmer who wants to build a media pipeline. The program-
mer can use an extensive set of powerful tools to create media pipelines without
writing a single line of code. Performing complex media manipulations becomes
very easy.

• The plugin programmer. Plugin programmers are provided a clean and simple API
to create self-contained plugins. An extensive debugging and tracing mechanism
has been integrated. GStreamer also comes with an extensive set of real-life plugins
that serve as examples too.

Object oriented
GStreamer adheres to GObject, the GLib 2.0 object model. A programmer familiar
with GLib 2.0 or GTK+ will be comfortable with GStreamer.

GStreamer uses the mechanism of signals and object properties.

All objects can be queried at runtime for their various properties and capabilities.

GStreamer intends to be similar in programmingmethodology to GTK+. This applies
to the object model, ownership of objects, reference counting, etc.

Extensible
All GStreamerObjects can be extended using the GObject inheritance methods.

All plugins are loaded dynamically and can be extended and upgraded indepen-
dently.

Allow binary-only plugins
Plugins are shared libraries that are loaded at runtime. Since all the properties of the
plugin can be set using the GObject properties, there is no need (and in fact no way)
to have any header files installed for the plugins.

Special care has been taken to make plugins completely self-contained. All relevant
aspects of plugins can be queried at run-time.

High performance
High performance is obtained by:

• using GLib’s GSlice allocator

• extremely light-weight links between plugins. Data can travel the pipeline with
minimal overhead. Data passing between plugins only involves a pointer derefer-
ence in a typical pipeline.

• providing a mechanism to directly work on the target memory. A plugin can for
example directly write to the X server’s shared memory space. Buffers can also
point to arbitrary memory, such as a sound card’s internal hardware buffer.

3

Chapter 2. Design principles

• refcounting and copy on write minimize usage of memcpy. Sub-buffers efficiently
split buffers into manageable pieces.

• dedicated streaming threads, with scheduling handled by the kernel.

• allowing hardware acceleration by using specialized plugins.

• using a plugin registry with the specifications of the plugins so that the plugin
loading can be delayed until the plugin is actually used.

Clean core/plugins separation
The core of GStreamer is essentially media-agnostic. It only knows about bytes and
blocks, and only contains basic elements. The core of GStreamer is functional enough
to even implement low-level system tools, like cp.

All of the media handling functionality is provided by plugins external to the core.
These tell the core how to handle specific types of media.

Provide a framework for codec experimentation
GStreamer also wants to be an easy framework where codec developers can experi-
ment with different algorithms, speeding up the development of open and free mul-
timedia codecs like Theora and Vorbis1.

Notes
1. http://www.xiph.org/ogg/index.html

4

Chapter 3. Foundations

This chapter of the guide introduces the basic concepts of GStreamer. Understanding
these concepts will be important in reading any of the rest of this guide, all of them
assume understanding of these basic concepts.

Elements
An element is themost important class of objects in GStreamer. Youwill usually create
a chain of elements linked together and let data flow through this chain of elements.
An element has one specific function, which can be the reading of data from a file,
decoding of this data or outputting this data to your sound card (or anything else).
By chaining together several such elements, you create a pipeline that can do a specific
task, for example media playback or capture. GStreamer ships with a large collection
of elements by default, making the development of a large variety of media applica-
tions possible. If needed, you can also write new elements. That topic is explained in
great deal in the GStreamer Plugin Writer’s Guide.

Pads
Pads are element’s input and output, where you can connect other elements. They
used to negotiate links and data flow between elements in GStreamer. A pad can
be viewed as a “plug” or “port” on an element where links may be made with other
elements, and through which data can flow to or from those elements. Pads have spe-
cific data handling capabilities: A pad can restrict the type of data that flows through
it. Links are only allowed between two pads when the allowed data types of the two
pads are compatible. Data types are negotiated between pads using a process called
caps negotiation. Data types are described as a GstCaps.

An analogy may be helpful here. A pad is similar to a plug or jack on a physical
device. Consider, for example, a home theater system consisting of an amplifier, a
DVD player, and a (silent) video projector. Linking the DVD player to the amplifier is
allowed because both devices have audio jacks, and linking the projector to the DVD
player is allowed because both devices have compatible video jacks. Links between
the projector and the amplifier may not be made because the projector and amplifier
have different types of jacks. Pads in GStreamer serve the same purpose as the jacks
in the home theater system.

For the most part, all data in GStreamer flows one way through a link between ele-
ments. Data flows out of one element through one or more source pads, and elements
accept incoming data through one or more sink pads. Source and sink elements have
only source and sink pads, respectively. Data usually means buffers (described by the
GstBuffer 1 object) and events (described by the GstEvent2 object).

Bins and pipelines
A bin is a container for a collection of elements. A pipeline is a special subtype of a
bin that allows execution of all of its contained child elements. Since bins are sub-
classes of elements themselves, you can mostly control a bin as if it were an element,
thereby abstracting away a lot of complexity for your application. You can, for exam-
ple change state on all elements in a bin by changing the state of that bin itself. Bins
also forward bus messages from their contained children (such as error messages, tag
messages or EOS messages).

A pipeline is a top-level bin. As you set it to PAUSED or PLAYING state, data flow
will start and media processing will take place. Once started, pipelines will run in a
separate thread until you stop them or the end of the data stream is reached.

5

Chapter 3. Foundations

Figure 3-1. GStreamer pipeline for a simple ogg player

Notes
1. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html//gstreamer-

GstBuffer.html

2. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html//gstreamer-
GstEvent.html

6

Chapter 4. Initializing GStreamer

When writing a GStreamer application, you can simply include gst/gst.h to get
access to the library functions. Besides that, you will also need to intialize the
GStreamer library.

Simple initialization
Before the GStreamer libraries can be used, gst_init has to be called from the main
application. This call will perform the necessary initialization of the library as well as
parse the GStreamer-specific command line options.

A typical program 1 would have code to initialize GStreamer that looks like this:

Example 4-1. InitializingGStreamer

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{
const gchar *nano_str;
guint major, minor, micro, nano;

gst_init (&argc, &argv);

gst_version (&major, &minor, µ, &nano);

if (nano == 1)
nano_str = "(CVS)";

else if (nano == 2)
nano_str = "(Prerelease)";

else
nano_str = "";

printf ("This program is linked against GStreamer %d.%d.%d %s\n",
major, minor, micro, nano_str);

return 0;
}

Use the GST_VERSION_MAJOR, GST_VERSION_MINOR and
GST_VERSION_MICRO macros to get the GStreamer version you are building
against, or use the function gst_version to get the version your application is
linked against. GStreamer currently uses a scheme where versions with the same
major and minor versions are API-/ and ABI-compatible.

It is also possible to call the gst_init function with two NULL arguments, in which
case no command line options will be parsed by GStreamer.

The GOption interface
You can also use a GOption table to initialize your own parameters as shown in the
next example:

7

Chapter 4. Initializing GStreamer

Example 4-2. Initialisation using the GOption interface

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{
gboolean silent = FALSE;
gchar *savefile = NULL;
GOptionContext *ctx;
GError *err = NULL;
GOptionEntry entries[] = {

{ "silent", ’s’, 0, G_OPTION_ARG_NONE, &silent,
"do not output status information", NULL },

{ "output", ’o’, 0, G_OPTION_ARG_STRING, &savefile,
"save xml representation of pipeline to FILE and exit", "FILE" },

{ NULL }
};

/* we must initialise the threading system before using any
* other GLib funtion, such as g_option_context_new() */

if (!g_thread_supported ())
g_thread_init (NULL);

ctx = g_option_context_new ("- Your application");
g_option_context_add_main_entries (ctx, entries, NULL);
g_option_context_add_group (ctx, gst_init_get_option_group ());
if (!g_option_context_parse (ctx, &argc, &argv, &err)) {

g_print ("Failed to initialize: %s\n", err->message);
g_error_free (err);
return 1;

}

printf ("Run me with --help to see the Application options appended.\n");

return 0;
}

As shown in this fragment, you can use a GOption2 table to define your
application-specific command line options, and pass this table to the GLib
initialization function along with the option group returned from the function
gst_init_get_option_group. Your application options will be parsed in addition
to the standard GStreamer options.

Notes
1. The code for this example is automatically extracted from the documentation and

built under examples/manual in the GStreamer tarball.

2. http://developer.gnome.org/doc/API/2.0/glib/glib-Commandline-option-
parser.html

8

Chapter 5. Elements

The most important object in GStreamer for the application programmer is the
GstElement1 object. An element is the basic building block for a media pipeline. All
the different high-level components you will use are derived from GstElement.
Every decoder, encoder, demuxer, video or audio output is in fact a GstElement

What are elements?
For the application programmer, elements are best visualized as black boxes. On the
one end, you might put something in, the element does something with it and some-
thing else comes out at the other side. For a decoder element, for example, you’d
put in encoded data, and the element would output decoded data. In the next chap-
ter (see Pads and capabilities), you will learn more about data input and output in
elements, and how you can set that up in your application.

Source elements
Source elements generate data for use by a pipeline, for example reading from disk
or from a sound card. Figure 5-1 shows how we will visualise a source element. We
always draw a source pad to the right of the element.

Figure 5-1. Visualisation of a source element

Source elements do not accept data, they only generate data. You can see this in the
figure because it only has a source pad (on the right). A source pad can only generate
data.

Filters, convertors, demuxers, muxers and codecs
Filters and filter-like elements have both input and outputs pads. They operate on
data that they receive on their input (sink) pads, andwill provide data on their output
(source) pads. Examples of such elements are a volume element (filter), a video scaler
(convertor), an Ogg demuxer or a Vorbis decoder.

Filter-like elements can have any number of source or sink pads. A video demuxer,
for example, would have one sink pad and several (1-N) source pads, one for each
elementary stream contained in the container format. Decoders, on the other hand,
will only have one source and sink pads.

Figure 5-2. Visualisation of a filter element
9

Chapter 5. Elements

Figure 5-2 shows howwe will visualise a filter-like element. This specific element has
one source and one sink element. Sink pads, receiving input data, are depicted at the
left of the element; source pads are still on the right.

Figure 5-3. Visualisation of a filter element with more than one output pad

Figure 5-3 shows another filter-like element, this one having more than one output
(source) pad. An example of one such element could, for example, be an Ogg de-
muxer for an Ogg stream containing both audio and video. One source pad will con-
tain the elementary video stream, another will contain the elementary audio stream.
Demuxers will generally fire signals when a new pad is created. The application pro-
grammer can then handle the new elementary stream in the signal handler.

Sink elements
Sink elements are end points in a media pipeline. They accept data but do not pro-
duce anything. Disk writing, soundcard playback, and video output would all be
implemented by sink elements. Figure 5-4 shows a sink element.

Figure 5-4. Visualisation of a sink element

Creating a GstElement

The simplest way to create an element is to use gst_element_factory_make ()2.
This function takes a factory name and an element name for the newly created el-
ement. The name of the element is something you can use later on to look up the
element in a bin, for example. The name will also be used in debug output. You can
pass NULL as the name argument to get a unique, default name.

When you don’t need the element anymore, you need to unref it using
gst_object_unref ()3. This decreases the reference count for the element by 1.
An element has a refcount of 1 when it gets created. An element gets destroyed
completely when the refcount is decreased to 0.

The following example 4 shows how to create an element named source from the el-
ement factory named fakesrc. It checks if the creation succeeded. After checking, it
unrefs the element.

#include <gst/gst.h>

10

Chapter 5. Elements

int
main (int argc,

char *argv[])
{
GstElement *element;

/* init GStreamer */
gst_init (&argc, &argv);

/* create element */
element = gst_element_factory_make ("fakesrc", "source");
if (!element) {

g_print ("Failed to create element of type ’fakesrc’\n");
return -1;

}

gst_object_unref (GST_OBJECT (element));

return 0;
}

gst_element_factory_make is actually a shorthand for a combination of two func-
tions. A GstElement5 object is created from a factory. To create the element, you have
to get access to a GstElementFactory6 object using a unique factory name. This is
done with gst_element_factory_find ()7.

The following code fragment is used to get a factory that can be used to create the
fakesrc element, a fake data source. The function gst_element_factory_create ()8

will use the element factory to create an element with the given name.

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{
GstElementFactory *factory;
GstElement * element;

/* init GStreamer */
gst_init (&argc, &argv);

/* create element, method #2 */
factory = gst_element_factory_find ("fakesrc");
if (!factory) {

g_print ("Failed to find factory of type ’fakesrc’\n");
return -1;

}
element = gst_element_factory_create (factory, "source");
if (!element) {

g_print ("Failed to create element, even though its factory exists!\n");
return -1;

}

gst_object_unref (GST_OBJECT (element));

return 0;
}

11

Chapter 5. Elements

Using an element as a GObject

A GstElement9 can have several properties which are implemented using standard
GObjectproperties. The usual GObjectmethods to query, set and get property values
and GParamSpecs are therefore supported.

Every GstElement inherits at least one property from its parent GstObject:
the "name" property. This is the name you provide to the functions
gst_element_factory_make () or gst_element_factory_create (). You
can get and set this property using the functions gst_object_set_name and
gst_object_get_name or use the GObject property mechanism as shown below.

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{
GstElement *element;
gchar *name;

/* init GStreamer */
gst_init (&argc, &argv);

/* create element */
element = gst_element_factory_make ("fakesrc", "source");

/* get name */
g_object_get (G_OBJECT (element), "name", &name, NULL);
g_print ("The name of the element is ’%s’.\n", name);
g_free (name);

gst_object_unref (GST_OBJECT (element));

return 0;
}

Most plugins provide additional properties to provide more information about their
configuration or to configure the element. gst-inspect is a useful tool to query the
properties of a particular element, it will also use property introspection to give a
short explanation about the function of the property and about the parameter types
and ranges it supports. See the appendix for details about gst-inspect.

For more information about GObject properties we recommend you read the GOb-
ject manual10 and an introduction to The Glib Object system11.

A GstElement12 also provides various GObject signals that can be used as a flexible
callbackmechanism. Here, too, you can use gst-inspect to see which signals a specific
element supports. Together, signals and properties are the most basic way in which
elements and applications interact.

More about element factories
In the previous section, we briefly introduced the GstElementFactory13 object al-
ready as a way to create instances of an element. Element factories, however, are
much more than just that. Element factories are the basic types retrieved from the
GStreamer registry, they describe all plugins and elements that GStreamer can cre-
ate. This means that element factories are useful for automated element instancing,
such as what autopluggers do, and for creating lists of available elements, such as
what pipeline editing applications (e.g. GStreamer Editor14) do.

12

Chapter 5. Elements

Getting information about an element using a factory
Tools like gst-inspect will provide some generic information about an element,
such as the person that wrote the plugin, a descriptive name (and a shortname), a
rank and a category. The category can be used to get the type of the element
that can be created using this element factory. Examples of categories include
Codec/Decoder/Video (video decoder), Codec/Encoder/Video (video encoder),
Source/Video (a video generator), Sink/Video (a video output), and all these exist
for audio as well, of course. Then, there’s also Codec/Demuxer and Codec/Muxer
and a whole lot more. gst-inspect will give a list of all factories, and gst-inspect
<factory-name>will list all of the above information, and a lot more.

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{
GstElementFactory *factory;

/* init GStreamer */
gst_init (&argc, &argv);

/* get factory */
factory = gst_element_factory_find ("fakesrc");
if (!factory) {

g_print ("You don’t have the ’fakesrc’ element installed!\n");
return -1;

}

/* display information */
g_print ("The ’%s’ element is a member of the category %s.\n"

"Description: %s\n",
gst_plugin_feature_get_name (GST_PLUGIN_FEATURE (factory)),
gst_element_factory_get_klass (factory),
gst_element_factory_get_description (factory));

return 0;
}

You can use gst_registry_pool_feature_list (GST_TYPE_ELEMENT_FACTORY) to
get a list of all the element factories that GStreamer knows about.

Finding out what pads an element can contain
Perhaps the most powerful feature of element factories is that they contain a full
description of the pads that the element can generate, and the capabilities of those
pads (in layman words: what types of media can stream over those pads), without
actually having to load those plugins into memory. This can be used to provide a
codec selection list for encoders, or it can be used for autoplugging purposes for
media players. All current GStreamer-based media players and autopluggers work
this way. We’ll look closer at these features as we learn about GstPad and GstCaps in
the next chapter: Pads and capabilities

Linking elements
By linking a source element with zero or more filter-like elements and finally a sink
element, you set up a media pipeline. Data will flow through the elements. This is
the basic concept of media handling in GStreamer.

13

Chapter 5. Elements

Figure 5-5. Visualisation of three linked elements

By linking these three elements, we have created a very simple chain of elements.
The effect of this will be that the output of the source element (“element1”) will be
used as input for the filter-like element (“element2”). The filter-like element will do
something with the data and send the result to the final sink element (“element3”).

Imagine the above graph as a simple Ogg/Vorbis audio decoder. The source is a disk
source which reads the file from disc. The second element is a Ogg/Vorbis audio
decoder. The sink element is your soundcard, playing back the decoded audio data.
We will use this simple graph to construct an Ogg/Vorbis player later in this manual.

In code, the above graph is written like this:

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{
GstElement *pipeline;
GstElement *source, *filter, *sink;

/* init */
gst_init (&argc, &argv);

/* create pipeline */
pipeline = gst_pipeline_new ("my-pipeline");

/* create elements */
source = gst_element_factory_make ("fakesrc", "source");
filter = gst_element_factory_make ("identity", "filter");
sink = gst_element_factory_make ("fakesink", "sink");

/* must add elements to pipeline before linking them */
gst_bin_add_many (GST_BIN (pipeline), source, filter, sink, NULL);

/* link */
if (!gst_element_link_many (source, filter, sink, NULL)) {

g_warning ("Failed to link elements!");
}

[..]

}

For more specific behaviour, there are also the functions gst_element_link () and
gst_element_link_pads (). You can also obtain references to individual pads and
link those using various gst_pad_link_* () functions. See the API references for
more details.

Important: you must add elements to a bin or pipeline before linking them, since
adding an element to a bin will disconnect any already existing links. Also, you can-
not directly link elements that are not in the same bin or pipeline; if you want to link
elements or pads at different hierarchy levels, you will need to use ghost pads (more
about ghost pads later).

14

Chapter 5. Elements

Element States
After being created, an element will not actually perform any actions yet. You need
to change elements state to make it do something. GStreamer knows four element
states, each with a very specific meaning. Those four states are:

• GST_STATE_NULL: this is the default state. This state will deallocate all resources
held by the element.

• GST_STATE_READY: in the ready state, an element has allocated all of its global re-
sources, that is, resources that can be kept within streams. You can think about
opening devices, allocating buffers and so on. However, the stream is not opened
in this state, so the stream positions is automatically zero. If a stream was previ-
ously opened, it should be closed in this state, and position, properties and such
should be reset.

• GST_STATE_PAUSED: in this state, an element has opened the stream, but is not ac-
tively processing it. An element is allowed to modify a stream’s position, read and
process data and such to prepare for playback as soon as state is changed to PLAY-
ING, but it is not allowed to play the data which would make the clock run. In
summary, PAUSED is the same as PLAYING but without a running clock.

Elements going into the PAUSED state should prepare themselves for moving over
to the PLAYING state as soon as possible. Video or audio outputs would, for ex-
ample, wait for data to arrive and queue it so they can play it right after the state
change. Also, video sinks can already play the first frame (since this does not affect
the clock yet). Autopluggers could use this same state transition to already plug
together a pipeline. Most other elements, such as codecs or filters, do not need to
explicitely do anything in this state, however.

• GST_STATE_PLAYING: in the PLAYING state, an element does exactly the same as
in the PAUSED state, except that the clock now runs.

You can change the state of an element using the function gst_element_set_state
(). If you set an element to another state, GStreamer will internally traverse all in-
termediate states. So if you set an element from NULL to PLAYING, GStreamerwill
internally set the element to READY and PAUSED in between.

Whenmoved to GST_STATE_PLAYING, pipelines will process data automatically. They
do not need to be iterated in any form. Internally, GStreamer will start threads that
take this task on to them. GStreamer will also take care of switching messages from
the pipeline’s thread into the application’s own thread, by using a GstBus15. See
Chapter 7 for details.

Notes
1. ../../gstreamer/html/GstElement.html

2. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElementFactory.html#gst-
element-factory-make

3. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstObject.html#gst-
object-unref

4. The code for this example is automatically extracted from the documentation and
built under examples/manual in the GStreamer tarball.

5. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElement.html

6. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElementFactory.html

7. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElementFactory.html#gst-
element-factory-find

8. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElementFactory.html#gst-
element-factory-create

15

Chapter 5. Elements

9. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElement.html

10. http://developer.gnome.org/doc/API/2.0/gobject/index.html

11. http://developer.gnome.org/doc/API/2.0/gobject/pr01.html

12. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/gstreamer/html/GstElementFactory

13. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstElement.html

14. http://gstreamer.freedesktop.org/modules/gst-editor.html

15. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstBus.html

16

Chapter 6. Bins

A bin is a container element. You can add elements to a bin. Since a bin is an element
itself, a bin can be handled in the same way as any other element. Therefore, the
whole previous chapter (Elements) applies to bins as well.

What are bins
Bins allow you to combine a group of linked elements into one logical element. You
do not deal with the individual elements anymore but with just one element, the bin.
We will see that this is extremely powerful when you are going to construct complex
pipelines since it allows you to break up the pipeline in smaller chunks.

The bin will also manage the elements contained in it. It will figure out
how the data will flow in the bin and generate an optimal plan for that
data flow. Plan generation is one of the most complicated procedures in
GStreamer. You will learn more about this process, called scheduling, in
the Section called Scheduling in GStreamer in Chapter 16.

Figure 6-1. Visualisation of a bin with some elements in it

There is one specialized type of bin available to the GStreamer programmer:

• A pipeline: a generic container that allows scheduling of the containing elements.
The toplevel bin has to be a pipeline, every application thus needs at least one of
these. Pipelines will automatically run themselves in a background thread when
started.

Creating a bin
Bins are created in the same way that other elements are created, i.e. using an ele-
ment factory. There are also convenience functions available (gst_bin_new () and
gst_pipeline_new ()). To add elements to a bin or remove elements from a bin,
you can use gst_bin_add () and gst_bin_remove (). Note that the bin that you
add an element to will take ownership of that element. If you destroy the bin, the
element will be dereferenced with it. If you remove an element from a bin, it will be
dereferenced automatically.

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{
GstElement *bin, *pipeline, *source, *sink;

17

Chapter 6. Bins

/* init */
gst_init (&argc, &argv);

/* create */
pipeline = gst_pipeline_new ("my_pipeline");
bin = gst_bin_new ("my_bin");
source = gst_element_factory_make ("fakesrc", "source");
sink = gst_element_factory_make ("fakesink", "sink");

/* First add the elements to the bin */
gst_bin_add_many (GST_BIN (bin), source, sink, NULL);
/* add the bin to the pipeline */
gst_bin_add (GST_BIN (pipeline), bin);

/* link the elements */
gst_element_link (source, sink);

[..]

}

There are various functions to lookup elements in a bin. You can also get a list of all
elements that a bin contains using the function gst_bin_get_list (). See the API
references of GstBin1 for details.

Custom bins
The application programmer can create custom bins packed with elements to per-
form a specific task. This allows you, for example, to write an Ogg/Vorbis decoder
with just the following lines of code:

int
main (int argc,

char *argv[])
{
GstElement *player;

/* init */
gst_init (&argc, &argv);

/* create player */
player = gst_element_factory_make ("oggvorbisplayer", "player");

/* set the source audio file */
g_object_set (player, "location", "helloworld.ogg", NULL);

/* start playback */
gst_element_set_state (GST_ELEMENT (player), GST_STATE_PLAYING);

[..]
}

Custom bins can be created with a plugin or an XML description. You will find more
information about creating custom bin in the Plugin Writers Guide2.

Examples of such custom bins are the playbin and decodebin elements from gst-
plugins-base3.

18

Chapter 6. Bins

Notes
1. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstBin.html

2. http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/index.html

3. http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-base-
plugins/html/index.html

19

Chapter 6. Bins

20

Chapter 7. Bus

A bus is a simple system that takes care of forwarding messages from the pipeline
threads to an application in its own thread context. The advantage of a bus is that an
application does not need to be thread-aware in order to use GStreamer, even though
GStreamer itself is heavily threaded.

Every pipeline contains a bus by default, so applications do not need to create a bus
or anything. The only thing applications should do is set a message handler on a bus,
which is similar to a signal handler to an object. When the mainloop is running, the
bus will periodically be checked for new messages, and the callback will be called
when any message is available.

How to use a bus
There are two different ways to use a bus:

• Run a GLib/Gtk+ main loop (or iterate the default GLib main context yourself
regularly) and attach some kind of watch to the bus. This way the GLib main loop
will check the bus for new messages and notify you whenever there are messages.

Typically you would use gst_bus_add_watch () or gst_bus_add_signal_watch
() in this case.

To use a bus, attach a message handler to the bus of a pipeline using
gst_bus_add_watch (). This handler will be called whenever the pipeline emits
a message to the bus. In this handler, check the signal type (see next section) and
do something accordingly. The return value of the handler should be TRUE to
remove the message from the bus.

• Check for messages on the bus yourself. This can be done using gst_bus_peek ()
and/or gst_bus_poll ().

#include <gst/gst.h>

static GMainLoop *loop;

static gboolean
my_bus_callback (GstBus *bus,

GstMessage *message,
gpointer data)

{
g_print ("Got %s message\n", GST_MESSAGE_TYPE_NAME (message));

switch (GST_MESSAGE_TYPE (message)) {
case GST_MESSAGE_ERROR: {

GError *err;
gchar *debug;

gst_message_parse_error (message, &err, &debug);
g_print ("Error: %s\n", err->message);
g_error_free (err);
g_free (debug);

g_main_loop_quit (loop);
break;

}
case GST_MESSAGE_EOS:

/* end-of-stream */
g_main_loop_quit (loop);
break;

default:

21

Chapter 7. Bus

/* unhandled message */
break;

}

/* we want to be notified again the next time there is a message
* on the bus, so returning TRUE (FALSE means we want to stop watching
* for messages on the bus and our callback should not be called again)
*/

return TRUE;
}

gint
main (gint argc,

gchar *argv[])
{
GstElement *pipeline;
GstBus *bus;

/* init */
gst_init (&argc, &argv);

/* create pipeline, add handler */
pipeline = gst_pipeline_new ("my_pipeline");

/* adds a watch for new message on our pipeline’s message bus to
* the default GLib main context, which is the main context that our
* GLib main loop is attached to below
*/

bus = gst_pipeline_get_bus (GST_PIPELINE (pipeline));
gst_bus_add_watch (bus, my_bus_callback, NULL);
gst_object_unref (bus);

[..]

/* create a mainloop that runs/iterates the default GLib main context
* (context NULL), in other words: makes the context check if anything
* it watches for has happened. When a message has been posted on the
* bus, the default main context will automatically call our
* my_bus_callback() function to notify us of that message.
* The main loop will be run until someone calls g_main_loop_quit()
*/

loop = g_main_loop_new (NULL, FALSE);
g_main_loop_run (loop);

/* clean up */
gst_element_set_state (pipeline, GST_STATE_NULL);
gst_object_unref (pipeline);
g_main_loop_unref (loop);

return 0;
}

It is important to know that the handler will be called in the thread context of the
mainloop. This means that the interaction between the pipeline and application over
the bus is asynchronous, and thus not suited for some real-time purposes, such as
cross-fading between audio tracks, doing (theoretically) gapless playback or video
effects. All such things should be done in the pipeline context, which is easiest by
writing a GStreamer plug-in. It is very useful for its primary purpose, though: pass-
ing messages from pipeline to application. The advantage of this approach is that all
the threading that GStreamer does internally is hidden from the application and the
application developer does not have to worry about thread issues at all.

22

Chapter 7. Bus

Note that if you’re using the default GLib mainloop integration, you can, instead of
attaching a watch, connect to the “message” signal on the bus. This way you don’t
have to switch() on all possible message types; just connect to the interesting signals
in form of “message::<type>”, where <type> is a specific message type (see the next
section for an explanation of message types).

The above snippet could then also be written as:

GstBus *bus;

[..]

bus = gst_pipeline_get_bus (GST_PIPELINE (pipeline);
gst_bus_add_signal_watch (bus);
g_signal_connect (bus, "message::error", G_CALLBACK (cb_message_error), NULL);
g_signal_connect (bus, "message::eos", G_CALLBACK (cb_message_eos), NULL);

[..]

If you aren’t using GLib mainloop, the asynchronous message signals won’t be avail-
able by default. You can however install a custom sync handler that wakes up the
custom mainloop and that uses gst_bus_async_signal_func () to emit the sig-
nals. (see also documentation1 for details)

Message types
GStreamer has a few pre-defined message types that can be passed over the bus.
The messages are extensible, however. Plug-ins can define additional messages, and
applications can decide to either have specific code for those or ignore them. All ap-
plications are strongly recommended to at least handle error messages by providing
visual feedback to the user.

All messages have a message source, type and timestamp. The message source can
be used to see which element emitted the message. For some messages, for example,
only the ones emitted by the top-level pipeline will be interesting to most applica-
tions (e.g. for state-change notifications). Below is a list of all messages and a short
explanation of what they do and how to parse message-specific content.

• Error, warning and information notifications: those are used by elements if a mes-
sage should be shown to the user about the state of the pipeline. Error messages
are fatal and terminate the data-passing. The error should be repaired to resume
pipeline activity. Warnings are not fatal, but imply a problem nevertheless. Infor-
mation messages are for non-problem notifications. All those messages contain a
GErrorwith the main error type and message, and optionally a debug string. Both
can be extracted using gst_message_parse_error (), _parse_warning () and
_parse_info (). Both error and debug string should be free’ed after use.

• End-of-stream notification: this is emitted when the stream has ended. The state
of the pipeline will not change, but further media handling will stall. Applications
can use this to skip to the next song in their playlist. After end-of-stream, it is also
possible to seek back in the stream. Playback will then continue automatically. This
message has no specific arguments.

• Tags: emitted when metadata was found in the stream. This can be emitted mul-
tiple times for a pipeline (e.g. once for descriptive metadata such as artist name
or song title, and another one for stream-information, such as samplerate and bi-
trate). Applications should cache metadata internally. gst_message_parse_tag
() should be used to parse the taglist, which should be gst_tag_list_free ()’ed
when no longer needed.

23

Chapter 7. Bus

• State-changes: emitted after a successful state change.
gst_message_parse_state_changed () can be used to parse the old and new
state of this transition.

• Buffering: emitted during caching of network-streams. One can manually extract
the progress (in percent) from the message by extracting the “buffer-percent” prop-
erty from the structure returned by gst_message_get_structure ().

• Element messages: these are special messages that are unique to certain elements
and usually represent additional features. The element’s documentation should
mention in detail which element messages a particular element may send. As an
example, the ’qtdemux’ QuickTime demuxer elementmay send a ’redirect’ element
message on certain occasions if the stream contains a redirect instruction.

• Application-specific messages: any information on those can be extracted by get-
ting the message structure (see above) and reading its fields. Usually these mes-
sages can safely be ignored.

Application messages are primarily meant for internal use in applications in case
the application needs to marshal information from some thread into the main
thread. This is particularly useful when the application is making use of element
signals (as those signals will be emitted in the context of the streaming thread).

Notes
1. http://gstreamer.freedesktop.org/data/doc/gstreamer/stable/gstreamer/html/GstBus.html

24

Chapter 8. Pads and capabilities

As we have seen in Elements, the pads are the element’s interface to the outside
world. Data streams from one element’s source pad to another element’s sink
pad. The specific type of media that the element can handle will be exposed by
the pad’s capabilities. We will talk more on capabilities later in this chapter (see
the Section called Capabilities of a pad).

Pads
A pad type is defined by two properties: its direction and its availability. As we’ve
mentioned before, GStreamer defines two pad directions: source pads and sink pads.
This terminology is defined from the view of within the element: elements receive
data on their sink pads and generate data on their source pads. Schematically, sink
pads are drawn on the left side of an element, whereas source pads are drawn on the
right side of an element. In such graphs, data flows from left to right. 1

Pad directions are very simple compared to pad availability. A pad can have any of
three availabilities: always, sometimes and on request. The meaning of those three
types is exactly as it says: always pads always exist, sometimes pad exist only in
certain cases (and can disappear randomly), and on-request pads appear only if ex-
plicitely requested by applications.

Dynamic (or sometimes) pads
Some elements might not have all of their pads when the element is created. This
can happen, for example, with an Ogg demuxer element. The element will read the
Ogg stream and create dynamic pads for each contained elementary stream (vorbis,
theora) when it detects such a stream in the Ogg stream. Likewise, it will delete the
pad when the stream ends. This principle is very useful for demuxer elements, for
example.

Running gst-inspect oggdemuxwill show that the element has only one pad: a sink
pad called ’sink’. The other pads are “dormant”. You can see this in the pad template
because there is an “Exists: Sometimes” property. Depending on the type of Ogg file
you play, the pads will be created. We will see that this is very important when you
are going to create dynamic pipelines. You can attach a signal handler to an element
to inform you when the element has created a new pad from one of its “sometimes”
pad templates. The following piece of code is an example of how to do this:

#include <gst/gst.h>

static void
cb_new_pad (GstElement *element,

GstPad *pad,
gpointer data)

{
gchar *name;

name = gst_pad_get_name (pad);
g_print ("A new pad %s was created\n", name);
g_free (name);

/* here, you would setup a new pad link for the newly created pad */
[..]

}

int
main (int argc,

char *argv[])
{

25

Chapter 8. Pads and capabilities

GstElement *pipeline, *source, *demux;
GMainLoop *loop;

/* init */
gst_init (&argc, &argv);

/* create elements */
pipeline = gst_pipeline_new ("my_pipeline");
source = gst_element_factory_make ("filesrc", "source");
g_object_set (source, "location", argv[1], NULL);
demux = gst_element_factory_make ("oggdemux", "demuxer");

/* you would normally check that the elements were created properly */

/* put together a pipeline */
gst_bin_add_many (GST_BIN (pipeline), source, demux, NULL);
gst_element_link_pads (source, "src", demux, "sink");

/* listen for newly created pads */
g_signal_connect (demux, "pad-added", G_CALLBACK (cb_new_pad), NULL);

/* start the pipeline */
gst_element_set_state (GST_ELEMENT (pipeline), GST_STATE_PLAYING);
loop = g_main_loop_new (NULL, FALSE);
g_main_loop_run (loop);

[..]

}

Request pads
An element can also have request pads. These pads are not created automatically but
are only created on demand. This is very useful for multiplexers, aggregators and tee
elements. Aggregators are elements that merge the content of several input streams
together into one output stream. Tee elements are the reverse: they are elements that
have one input stream and copy this stream to each of their output pads, which are
created on request. Whenever an application needs another copy of the stream, it can
simply request a new output pad from the tee element.

The following piece of code shows how you can request a new output pad from a
“tee” element:

static void
some_function (GstElement *tee)
{
GstPad * pad;
gchar *name;

pad = gst_element_get_request_pad (tee, "src%d");
name = gst_pad_get_name (pad);
g_print ("A new pad %s was created\n", name);
g_free (name);

/* here, you would link the pad */
[..]

/* and, after doing that, free our reference */
gst_object_unref (GST_OBJECT (pad));

}

26

Chapter 8. Pads and capabilities

The gst_element_get_request_pad () method can be used to get a pad from the
element based on the name of the pad template. It is also possible to request a pad
that is compatible with another pad template. This is very useful if you want to link
an element to a multiplexer element and you need to request a pad that is compat-
ible. The method gst_element_get_compatible_pad () can be used to request a
compatible pad, as shown in the next example. It will request a compatible pad from
an Ogg multiplexer from any input.

static void
link_to_multiplexer (GstPad *tolink_pad,

GstElement *mux)
{
GstPad *pad;
gchar *srcname, *sinkname;

srcname = gst_pad_get_name (tolink_pad);
pad = gst_element_get_compatible_pad (mux, tolink_pad);
gst_pad_link (tolinkpad, pad);
sinkname = gst_pad_get_name (pad);
gst_object_unref (GST_OBJECT (pad));

g_print ("A new pad %s was created and linked to %s\n", srcname, sinkname);
g_free (sinkname);
g_free (srcname);

}

Capabilities of a pad
Since the pads play a very important role in how the element is viewed by the outside
world, a mechanism is implemented to describe the data that can flow or currently
flows through the pad by using capabilities. Here, we will briefly describe what capa-
bilities are and how to use them, enough to get an understanding of the concept. For
an in-depth look into capabilities and a list of all capabilities defined in GStreamer,
see the Plugin Writers Guide2.

Capabilities are attached to pad templates and to pads. For pad templates, it will
describe the types of media that may stream over a pad created from this template.
For pads, it can either be a list of possible caps (usually a copy of the pad template’s
capabilities), in which case the pad is not yet negotiated, or it is the type of media that
currently streams over this pad, in which case the pad has been negotiated already.

Dissecting capabilities
A pads capabilities are described in a GstCaps object. Internally, a GstCaps3 will con-
tain one or more GstStructure4 that will describe one media type. A negotiated pad
will have capabilities set that contain exactly one structure. Also, this structure will
contain only fixed values. These constraints are not true for unnegotiated pads or pad
templates.

As an example, below is a dump of the capabilities of the “vorbisdec” element, which
you will get by running gst-inspect vorbisdec. You will see two pads: a source and a
sink pad. Both of these pads are always available, and both have capabilities attached
to them. The sink pad will accept vorbis-encoded audio data, with the mime-type
“audio/x-vorbis”. The source pad will be used to send raw (decoded) audio samples
to the next element, with a raw audio mime-type (in this case, “audio/x-raw-int”)
The source pad will also contain properties for the audio samplerate and the amount
of channels, plus some more that you don’t need to worry about for now.

Pad Templates:

27

Chapter 8. Pads and capabilities

SRC template: ’src’
Availability: Always
Capabilities:

audio/x-raw-float
rate: [8000, 50000]

channels: [1, 2]
endianness: 1234

width: 32
buffer-frames: 0

SINK template: ’sink’
Availability: Always
Capabilities:

audio/x-vorbis

Properties and values
Properties are used to describe extra information for capabilities. A property consists
of a key (a string) and a value. There are different possible value types that can be
used:

• Basic types, this can be pretty much any GType registered with Glib. Those proper-
ties indicate a specific, non-dynamic value for this property. Examples include:

• An integer value (G_TYPE_INT): the property has this exact value.

• A boolean value (G_TYPE_BOOLEAN): the property is either TRUE or FALSE.

• A float value (G_TYPE_FLOAT): the property has this exact floating point value.

• A string value (G_TYPE_STRING): the property contains a UTF-8 string.

• A fraction value (GST_TYPE_FRACTION): contains a fraction expressed by an inte-
ger numerator and denominator.

• Range types are GTypes registered by GStreamer to indicate a range of possible
values. They are used for indicating allowed audio samplerate values or supported
video sizes. The two types defined in GStreamer are:

• An integer range value (GST_TYPE_INT_RANGE): the property denotes a range
of possible integers, with a lower and an upper boundary. The “vorbisdec” ele-
ment, for example, has a rate property that can be between 8000 and 50000.

• A float range value (GST_TYPE_FLOAT_RANGE): the property denotes a range of
possible floating point values, with a lower and an upper boundary.

• A fraction range value (GST_TYPE_FRACTION_RANGE): the property denotes a
range of possible fraction values, with a lower and an upper boundary.

• A list value (GST_TYPE_LIST): the property can take any value from a list of basic
values given in this list.

Example: caps that express that either a sample rate of 44100 Hz and a sample rate
of 48000 Hz is supported would use a list of integer values, with one value being
44100 and one value being 48000.

• An array value (GST_TYPE_ARRAY): the property is an array of values. Each value
in the array is a full value on its own, too. All values in the array should be of the
same elementary type. This means that an array can contain any combination of
integers, lists of integers, integer ranges together, and the same for floats or strings,
but it can not contain both floats and ints at the same time.

28

Chapter 8. Pads and capabilities

Example: for audio where there are more than two channels involved the channel
layout needs to be specified (for one and two channel audio the channel layout
is implicit unless stated otherwise in the caps). So the channel layout would be
an array of integer enum values where each enum value represents a loudspeaker
position. Unlike a GST_TYPE_LIST, the values in an array will be interpreted as a
whole.

What capabilities are used for
Capabilities (short: caps) describe the type of data that is streamed between two pads,
or that one pad (template) supports. This makes them very useful for various pur-
poses:

• Autoplugging: automatically finding elements to link to a pad based on its capa-
bilities. All autopluggers use this method.

• Compatibility detection: when two pads are linked, GStreamer can verify if the
two pads are talking about the same media type. The process of linking two pads
and checking if they are compatible is called “caps negotiation”.

• Metadata: by reading the capabilities from a pad, applications can provide infor-
mation about the type of media that is being streamed over the pad, which is in-
formation about the stream that is currently being played back.

• Filtering: an application can use capabilities to limit the possible media types
that can stream between two pads to a specific subset of their supported
stream types. An application can, for example, use “filtered caps” to set
a specific (fixed or non-fixed) video size that should stream between two
pads. You will see an example of filtered caps later in this manual, in
the Section calledManually adding or removing data from/to a pipeline in Chapter 18.
You can do caps filtering by inserting a capsfilter element into your pipeline and
setting its “caps” property. Caps filters are often placed after converter elements
like audioconvert, audioresample, ffmpegcolorspace or videoscale to force those
converters to convert data to a specific output format at a certain point in a stream.

Using capabilities for metadata
A pad can have a set (i.e. one or more) of capabilities attached to it. Capabilities
(GstCaps) are represented as an array of one or more GstStructures, and each
GstStructure is an array of fields where each field consists of a field name string
(e.g. "width") and a typed value (e.g. G_TYPE_INT or GST_TYPE_INT_RANGE).

Note that there is a distinct difference between the possible capabilities of a pad (ie.
usually what you find as caps of pad templates as they are shown in gst-inspect),
the allowed caps of a pad (can be the same as the pad’s template caps or a subset of
them, depending on the possible caps of the peer pad) and lastly negotiated caps (these
describe the exact format of a stream or buffer and contain exactly one structure and
have no variable bits like ranges or lists, ie. they are fixed caps).

You can get values of properties in a set of capabilities by querying individual
properties of one structure. You can get a structure from a caps using
gst_caps_get_structure () and the number of structures in a GstCaps using
gst_caps_get_size ().

Caps are called simple capswhen they contain only one structure, and fixed capswhen
they contain only one structure and have no variable field types (like ranges or lists
of possible values). Two other special types of caps are ANY caps and empty caps.

Here is an example of how to extract the width and height from a set of fixed video
caps:

29

Chapter 8. Pads and capabilities

static void
read_video_props (GstCaps *caps)
{
gint width, height;
const GstStructure *str;

g_return_if_fail (gst_caps_is_fixed (caps));

str = gst_caps_get_structure (caps, 0);
if (!gst_structure_get_int (str, "width", &width) ||

!gst_structure_get_int (str, "height", &height)) {
g_print ("No width/height available\n");
return;

}

g_print ("The video size of this set of capabilities is %dx%d\n",
width, height);

}

Creating capabilities for filtering
While capabilities are mainly used inside a plugin to describe the media type of the
pads, the application programmer often also has to have basic understanding of ca-
pabilities in order to interface with the plugins, especially when using filtered caps.
When you’re using filtered caps or fixation, you’re limiting the allowed types of me-
dia that can stream between two pads to a subset of their supported media types.
You do this using a capsfilter element in your pipeline. In order to do this, you
also need to create your own GstCaps. The easiest way to do this is by using the
convenience function gst_caps_new_simple ():

static gboolean
link_elements_with_filter (GstElement *element1, GstElement *element2)
{
gboolean link_ok;
GstCaps *caps;

caps = gst_caps_new_simple ("video/x-raw-yuv",
"format", GST_TYPE_FOURCC, GST_MAKE_FOURCC (’I’, ’4’, ’2’, ’0’),

"width", G_TYPE_INT, 384,
"height", G_TYPE_INT, 288,
"framerate", GST_TYPE_FRACTION, 25, 1,
NULL);

link_ok = gst_element_link_filtered (element1, element2, caps);
gst_caps_unref (caps);

if (!link_ok) {
g_warning ("Failed to link element1 and element2!");

}

return link_ok;
}

This will force the data flow between those two elements to a certain video
format, width, height and framerate (or the linking will fail if that cannot be
achieved in the context of the elments involved). Keep in mind that when you use
gst_element_link_filtered () it will automatically create a capsfilter

element for you and insert it into your bin or pipeline between the two elements you

30

Chapter 8. Pads and capabilities

want to connect (this is important if you ever want to disconnect those elements
because then you will have to disconnect both elements from the capsfilter instead).

In some cases, you will want to create a more elaborate set of capabilities to filter a
link between two pads. Then, this function is too simplistic and you’ll want to use
the method gst_caps_new_full ():

static gboolean
link_elements_with_filter (GstElement *element1, GstElement *element2)
{
gboolean link_ok;
GstCaps *caps;

caps = gst_caps_new_full (
gst_structure_new ("video/x-raw-yuv",

"width", G_TYPE_INT, 384,
"height", G_TYPE_INT, 288,
"framerate", GST_TYPE_FRACTION, 25, 1,
NULL),

gst_structure_new ("video/x-raw-rgb",
"width", G_TYPE_INT, 384,
"height", G_TYPE_INT, 288,
"framerate", GST_TYPE_FRACTION, 25, 1,
NULL),

NULL);

link_ok = gst_element_link_filtered (element1, element2, caps);
gst_caps_unref (caps);

if (!link_ok) {
g_warning ("Failed to link element1 and element2!");

}

return link_ok;
}

See the API references for the full API of GstStructure and GstCaps.

Ghost pads
You can see from Figure 8-1 how a bin has no pads of its own. This is where "ghost
pads" come into play.

Figure 8-1. Visualisation of a GstBin5 element without ghost pads

31

Chapter 8. Pads and capabilities

A ghost pad is a pad from some element in the bin that can be accessed directly from
the bin as well. Compare it to a symbolic link in UNIX filesystems. Using ghost pads
on bins, the bin also has a pad and can transparently be used as an element in other
parts of your code.

Figure 8-2. Visualisation of a GstBin6 element with a ghost pad

Figure 8-2 is a representation of a ghost pad. The sink pad of element one is now also
a pad of the bin. Because ghost pads look and work like any other pads, they can be
added to any type of elements, not just to a GstBin, just like ordinary pads.

A ghostpad is created using the function gst_ghost_pad_new ():

#include <gst/gst.h>

int
main (int argc,

char *argv[])
{
GstElement *bin, *sink;
GstPad *pad;

/* init */
gst_init (&argc, &argv);

/* create element, add to bin */
sink = gst_element_factory_make ("fakesink", "sink");
bin = gst_bin_new ("mybin");
gst_bin_add (GST_BIN (bin), sink);

/* add ghostpad */
pad = gst_element_get_static_pad (sink, "sink");
gst_element_add_pad (bin, gst_ghost_pad_new ("sink", pad));
gst_object_unref (GST_OBJECT (pad));

[..]

}

In the above example, the bin now also has a pad: the pad called “sink” of the given
element. The bin can, from here on, be used as a substitute for the sink element. You
could, for example, link another element to the bin.

Notes
1. In reality, there is no objection to data flowing from a source pad to the sink pad of

an element upstream (to the left of this element in drawings). Data will, however,
always flow from a source pad of one element to the sink pad of another.

32

Chapter 8. Pads and capabilities

2. http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/index.html

3. ../../gstreamer/html/gstreamer-GstCaps.html

4. ../../gstreamer/html/gstreamer-GstStructure.html

5. ../../gstreamer/html/GstBin.html

6. ../../gstreamer/html/GstBin.html

33

Chapter 8. Pads and capabilities

34

Chapter 9. Buffers and Events

The data flowing through a pipeline consists of a combination of buffers and events.
Buffers contain the actual media data. Events contain control information, such as
seeking information and end-of-stream notifiers. All this will flow through the
pipeline automatically when it’s running. This chapter is mostly meant to explain
the concept to you; you don’t need to do anything for this.

Buffers
Buffers contain the data that will flow through the pipeline you have created. A
source element will typically create a new buffer and pass it through a pad to the
next element in the chain. When using the GStreamer infrastructure to create a me-
dia pipeline you will not have to deal with buffers yourself; the elements will do that
for you.

A buffer consists, amongst others, of:

• A pointer to a piece of memory.

• The size of the memory.

• A timestamp for the buffer.

• A refcount that indicates how many elements are using this buffer. This refcount
will be used to destroy the buffer when no element has a reference to it.

• Buffer flags.

The simple case is that a buffer is created, memory allocated, data put in it, and
passed to the next element. That element reads the data, does something (like cre-
ating a new buffer and decoding into it), and unreferences the buffer. This causes the
data to be free’ed and the buffer to be destroyed. A typical video or audio decoder
works like this.

There are more complex scenarios, though. Elements can modify buffers in-place, i.e.
without allocating a new one. Elements can also write to hardware memory (such as
from video-capture sources) or memory allocated from the X-server (using XShm).
Buffers can be read-only, and so on.

Events
Events are control particles that are sent both up- and downstream in a pipeline
alongwith buffers. Downstream events notify fellow elements of stream states. Possi-
ble events include seeking, flushes, end-of-stream notifications and so on. Upstream
events are used both in application-element interaction as well as element-element
interaction to request changes in stream state, such as seeks. For applications, only
upstream events are important. Downstream events are just explained to get a more
complete picture of the data concept.

Since most applications seek in time units, our example below does so too:

static void
seek_to_time (GstElement *element,

guint64 time_ns)
{
GstEvent *event;

event = gst_event_new_seek (1.0, GST_FORMAT_TIME,
GST_SEEK_FLAG_NONE,
GST_SEEK_METHOD_SET, time_ns,
GST_SEEK_TYPE_NONE, G_GUINT64_CONSTANT (0));

gst_element_send_event (element, event);

35

Chapter 9. Buffers and Events

}

The function gst_element_seek () is a shortcut for this. This is mostly just to show
how it all works.

36

Chapter 10. Your first application

This chapter will summarize everything you’ve learned in the previous chapters.
It describes all aspects of a simple GStreamer application, including initializing li-
braries, creating elements, packing elements together in a pipeline and playing this
pipeline. By doing all this, you will be able to build a simple Ogg/Vorbis audio
player.

Hello world
We’re going to create a simple first application, a simple Ogg/Vorbis command-line
audio player. For this, we will use only standard GStreamer components. The player
will read a file specified on the command-line. Let’s get started!

We’ve learned, in Chapter 4, that the first thing to do in your application is to initial-
ize GStreamer by calling gst_init (). Also, make sure that the application includes
gst/gst.h so all function names and objects are properly defined. Use #include
<gst/gst.h> to do that.

Next, you’ll want to create the different elements using gst_element_factory_make
(). For an Ogg/Vorbis audio player, we’ll need a source element that reads files from
a disk. GStreamer includes this element under the name “filesrc”. Next, we’ll need
something to parse the file and decode it into raw audio. GStreamer has two elements
for this: the first parses Ogg streams into elementary streams (video, audio) and is
called “oggdemux”. The second is a Vorbis audio decoder, it’s conveniently called
“vorbisdec”. Since “oggdemux” creates dynamic pads for each elementary stream,
you’ll need to set a “pad-added” event handler on the “oggdemux” element, like
you’ve learned in the Section called Dynamic (or sometimes) pads in Chapter 8, to link
the Ogg demuxer and the Vorbis decoder elements together. At last, we’ll also need
an audio output element, we will use “autoaudiosink”, which automatically detects
your audio device.

The last thing left to do is to add all elements into a container element, a
GstPipeline, and iterate this pipeline until we’ve played the whole song. We’ve
previously learned how to add elements to a container bin in Chapter 6, and we’ve
learned about element states in the Section called Element States in Chapter 5. We
will also attach a message handler to the pipeline bus so we can retrieve errors and
detect the end-of-stream.

Let’s now add all the code together to get our very first audio player:

#include <gst/gst.h>
#include <glib.h>

static gboolean
bus_call (GstBus *bus,

GstMessage *msg,
gpointer data)

{
GMainLoop *loop = (GMainLoop *) data;

switch (GST_MESSAGE_TYPE (msg)) {

case GST_MESSAGE_EOS:
g_print ("End of stream\n");
g_main_loop_quit (loop);
break;

case GST_MESSAGE_ERROR: {
gchar *debug;
GError *error;

37

Chapter 10. Your first application

gst_message_parse_error (msg, &error, &debug);
g_free (debug);

g_printerr ("Error: %s\n", error->message);
g_error_free (error);

g_main_loop_quit (loop);
break;

}
default:

break;
}

return TRUE;
}

static void
on_pad_added (GstElement *element,

GstPad *pad,
gpointer data)

{
GstPad *sinkpad;
GstElement *decoder = (GstElement *) data;

/* We can now link this pad with the vorbis-decoder sink pad */
g_print ("Dynamic pad created, linking demuxer/decoder\n");

sinkpad = gst_element_get_static_pad (decoder, "sink");

gst_pad_link (pad, sinkpad);

gst_object_unref (sinkpad);
}

int
main (int argc,

char *argv[])
{
GMainLoop *loop;

GstElement *pipeline, *source, *demuxer, *decoder, *conv, *sink;
GstBus *bus;

/* Initialisation */
gst_init (&argc, &argv);

loop = g_main_loop_new (NULL, FALSE);

/* Check input arguments */
if (argc != 2) {

g_printerr ("Usage: %s <Ogg/Vorbis filename>\n", argv[0]);
return -1;

}

/* Create gstreamer elements */
pipeline = gst_pipeline_new ("audio-player");
source = gst_element_factory_make ("filesrc", "file-source");
demuxer = gst_element_factory_make ("oggdemux", "ogg-demuxer");
decoder = gst_element_factory_make ("vorbisdec", "vorbis-decoder");
conv = gst_element_factory_make ("audioconvert", "converter");

38

Chapter 10. Your first application

sink = gst_element_factory_make ("autoaudiosink", "audio-output");

if (!pipeline || !source || !demuxer || !decoder || !conv || !sink) {
g_printerr ("One element could not be created. Exiting.\n");
return -1;

}

/* Set up the pipeline */

/* we set the input filename to the source element */
g_object_set (G_OBJECT (source), "location", argv[1], NULL);

/* we add a message handler */
bus = gst_pipeline_get_bus (GST_PIPELINE (pipeline));
gst_bus_add_watch (bus, bus_call, loop);
gst_object_unref (bus);

/* we add all elements into the pipeline */
/* file-source | ogg-demuxer | vorbis-decoder | converter | alsa-output */
gst_bin_add_many (GST_BIN (pipeline),

source, demuxer, decoder, conv, sink, NULL);

/* we link the elements together */
/* file-source -> ogg-demuxer ~> vorbis-decoder -> converter -> alsa-output */
gst_element_link (source, demuxer);
gst_element_link_many (decoder, conv, sink, NULL);
g_signal_connect (demuxer, "pad-added", G_CALLBACK (on_pad_added), decoder);

/* note that the demuxer will be linked to the decoder dynamically.
The reason is that Ogg may contain various streams (for example
audio and video). The source pad(s) will be created at run time,
by the demuxer when it detects the amount and nature of streams.
Therefore we connect a callback function which will be executed
when the "pad-added" is emitted.*/

/* Set the pipeline to "playing" state*/
g_print ("Now playing: %s\n", argv[1]);
gst_element_set_state (pipeline, GST_STATE_PLAYING);

/* Iterate */
g_print ("Running...\n");
g_main_loop_run (loop);

/* Out of the main loop, clean up nicely */
g_print ("Returned, stopping playback\n");
gst_element_set_state (pipeline, GST_STATE_NULL);

g_print ("Deleting pipeline\n");
gst_object_unref (GST_OBJECT (pipeline));

return 0;
}

We now have created a complete pipeline. We can visualise the pipeline as follows:

39

Chapter 10. Your first application

Figure 10-1. The "hello world" pipeline

Compiling and Running helloworld.c
To compile the helloworld example, use: gcc -Wall $(pkg-config --cflags --libs
gstreamer-0.10) helloworld.c -o helloworld. GStreamer makes use of pkg-config to
get compiler and linker flags needed to compile this application. If you’re running a
non-standard installation, make sure the PKG_CONFIG_PATH environment variable is
set to the correct location ($libdir/pkgconfig). application against the uninstalled
location.

You can run this example applicationwith ./helloworld file.ogg. Substitute file.ogg
with your favourite Ogg/Vorbis file.

Conclusion
This concludes our first example. As you see, setting up a pipeline is very low-level
but powerful. You will see later in this manual how you can create a more powerful
media player with even less effort using higher-level interfaces. We will discuss all
that in Part IV in GStreamer Application Development Manual (0.10.23.1). We will first,
however, go more in-depth into more advanced GStreamer internals.

It should be clear from the example that we can very easily replace the “filesrc” el-
ement with some other element that reads data from a network, or some other data
source element that is better integrated with your desktop environment. Also, you
can use other decoders and parsers/demuxers to support other media types. You
can use another audio sink if you’re not running Linux, but Mac OS X, Windows
or FreeBSD, or you can instead use a filesink to write audio files to disk instead of
playing them back. By using an audio card source, you can even do audio capture
instead of playback. All this shows the reusability of GStreamer elements, which is
its greatest advantage.

40

Chapter 11. Position tracking and seeking

So far, we’ve looked at how to create a pipeline to do media processing and how to
make it run. Most application developers will be interested in providing feedback to
the user on media progress. Media players, for example, will want to show a slider
showing the progress in the song, and usually also a label indicating stream length.
Transcoding applications will want to show a progress bar on how much percent of
the task is done. GStreamer has built-in support for doing all this using a concept
known as querying. Since seeking is very similar, it will be discussed here as well.
Seeking is done using the concept of events.

Querying: getting the position or length of a stream
Querying is defined as requesting a specific stream-property related to progress
tracking. This includes getting the length of a stream (if available) or getting
the current position. Those stream properties can be retrieved in various
formats such as time, audio samples, video frames or bytes. The function most
commonly used for this is gst_element_query (), although some convenience
wrappers are provided as well (such as gst_element_query_position () and
gst_element_query_duration ()). You can generally query the pipeline directly,
and it’ll figure out the internal details for you, like which element to query.

Internally, queries will be sent to the sinks, and “dispatched” backwards until one
element can handle it; that result will be sent back to the function caller. Usually, that
is the demuxer, although with live sources (from a webcam), it is the source itself.

#include <gst/gst.h>

static gboolean
cb_print_position (GstElement *pipeline)
{
GstFormat fmt = GST_FORMAT_TIME;
gint64 pos, len;

if (gst_element_query_position (pipeline, &fmt, &pos)
&& gst_element_query_duration (pipeline, &fmt, &len)) {
g_print ("Time: %" GST_TIME_FORMAT " / %" GST_TIME_FORMAT "\r",

GST_TIME_ARGS (pos), GST_TIME_ARGS (len));
}

/* call me again */
return TRUE;

}

gint
main (gint argc,

gchar *argv[])
{
GstElement *pipeline;

[..]

/* run pipeline */
g_timeout_add (200, (GSourceFunc) cb_print_position, pipeline);
g_main_loop_run (loop);

[..]

}

41

Chapter 11. Position tracking and seeking

Events: seeking (and more)
Events work in a very similar way as queries. Dispatching, for example, works ex-
actly the same for events (and also has the same limitations), and they can similarly
be sent to the toplevel pipeline and it will figure out everything for you. Although
there are more ways in which applications and elements can interact using events,
we will only focus on seeking here. This is done using the seek-event. A seek-event
contains a playback rate, a seek offset format (which is the unit of the offsets to follow,
e.g. time, audio samples, video frames or bytes), optionally a set of seeking-related
flags (e.g. whether internal buffers should be flushed), a seek method (which indi-
cates relative to what the offset was given), and seek offsets. The first offset (cur)
is the new position to seek to, while the second offset (stop) is optional and speci-
fies a position where streaming is supposed to stop. Usually it is fine to just specify
GST_SEEK_TYPE_NONE and -1 as end_method and end offset. The behaviour of a
seek is also wrapped in the gst_element_seek ().

static void
seek_to_time (GstElement *pipeline,

gint64 time_nanoseconds)
{
if (!gst_element_seek (pipeline, 1.0, GST_FORMAT_TIME, GST_SEEK_FLAG_FLUSH,

GST_SEEK_TYPE_SET, time_nanoseconds,
GST_SEEK_TYPE_NONE, GST_CLOCK_TIME_NONE)) {

g_print ("Seek failed!\n");
}

}

Seeks with the GST_SEEK_FLAG_FLUSH should be done when the pipeline is in
PAUSED or PLAYING state. The pipeline will automatically go to preroll state un-
til the new data after the seek will cause the pipeline to preroll again. After the
pipeline is prerolled, it will go back to the state (PAUSED or PLAYING) it was in
when the seek was executed. You can wait (blocking) for the seek to complete with
gst_element_get_state() or by waiting for the ASYNC_DONEmessage to appear
on the bus.

Seeks without the GST_SEEK_FLAG_FLUSH should only be done when the pipeline
is in the PLAYING state. Executing a non-flushing seek in the PAUSED state might
deadlock because the pipeline streaming threads might be blocked in the sinks.

It is important to realise that seeks will not happen instantly in the sense that they
are finished when the function gst_element_seek () returns. Depending on the
specific elements involved, the actual seeking might be done later in another thread
(the streaming thread), and it might take a short time until buffers from the new seek
position will reach downstream elements such as sinks (if the seek was non-flushing
then it might take a bit longer).

It is possible to do multiple seeks in short time-intervals, such as a direct response
to slider movement. After a seek, internally, the pipeline will be paused (if it was
playing), the positionwill be re-set internally, the demuxers and decoderswill decode
from the new position onwards and this will continue until all sinks have data again.
If it was playing originally, it will be set to playing again, too. Since the new position
is immediately available in a video output, you will see the new frame, even if your
pipeline is not in the playing state.

42

Chapter 12. Metadata

GStreamermakes a clear distinction between two types of metadata, and has support
for both types. The first is stream tags, which describe the content of a stream in a
non-technical way. Examples include the author of a song, the title of that very same
song or the album it is a part of. The other type of metadata is stream-info, which is a
somewhat technical description of the properties of a stream. This can include video
size, audio samplerate, codecs used and so on. Tags are handled using the GStreamer
tagging system. Stream-info can be retrieved from a GstPad.

Metadata reading
Stream information can most easily be read by reading them
from a GstPad. This has already been discussed before in
the Section called Using capabilities for metadata in Chapter 8. Therefore, we will
skip it here. Note that this requires access to all pads of which you want stream
information.

Tag reading is done through a bus in GStreamer, which has been discussed previ-
ously in Chapter 7. You can listen for GST_MESSAGE_TAGmessages and handle them
as you wish.

Note, however, that the GST_MESSAGE_TAG message may be fired multiple times in
the pipeline. It is the application’s responsibility to put all those tags together and
display them to the user in a nice, coherent way. Usually, using gst_tag_list_merge
() is a good enough way of doing this; make sure to empty the cache when loading
a new song, or after every few minutes when listening to internet radio. Also, make
sure you use GST_TAG_MERGE_PREPEND as merging mode, so that a new title (which
came in later) has a preference over the old one for display.

Tag writing
Tag writing is done using the GstTagSetter interface. All that’s required is
a tag-set-supporting element in your pipeline. In order to see if any of the
elements in your pipeline supports tag writing, you can use the function
gst_bin_iterate_all_by_interface (pipeline, GST_TYPE_TAG_SETTER).
On the resulting element, usually an encoder or muxer, you can use
gst_tag_setter_merge () (with a taglist) or gst_tag_setter_add () (with
individual tags) to set tags on it.

A nice extra feature in GStreamer tag support is that tags are preserved in pipelines.
This means that if you transcode one file containing tags into another media type,
and that new media type supports tags too, then the tags will be handled as part of
the data stream and be merged into the newly written media file, too.

43

Chapter 12. Metadata

44

Chapter 13. Interfaces

In the Section called Using an element as a GObject in Chapter 5, you have learned
how to use GObject properties as a simple way to do interaction between
applications and elements. This method suffices for the simple’n’straight settings,
but fails for anything more complicated than a getter and setter. For the more
complicated use cases, GStreamer uses interfaces based on the Glib GInterface
type.

Most of the interfaces handled here will not contain any example code. See the API
references for details. Here, we will just describe the scope and purpose of each in-
terface.

The URI interface
In all examples so far, we have only supported local files through the “filesrc”
element. GStreamer, obviously, supports many more location sources. However, we
don’t want applications to need to know any particular element implementation
details, such as element names for particular network source types and so on.
Therefore, there is a URI interface, which can be used to get the source element that
supports a particular URI type. There is no strict rule for URI naming, but in general
we follow naming conventions that others use, too. For example, assuming you
have the correct plugins installed, GStreamer supports “file:///<path>/<file>”,
“http://<host>/<path>/<file>”, “mms://<host>/<path>/<file>”, and so on.

In order to get the source or sink element supporting a particular URI, use
gst_element_make_from_uri (), with the URI type being either GST_URI_SRC for
a source element, or GST_URI_SINK for a sink element.

The Mixer interface
The mixer interface provides a uniform way to control the volume on a hardware (or
software) mixer. The interface is primarily intended to be implemented by elements
for audio inputs and outputs that talk directly to the hardware (e.g. OSS or ALSA
plugins).

Using this interface, it is possible to control a list of tracks (such as Line-in, Micro-
phone, etc.) from a mixer element. They can be muted, their volume can be changed
and, for input tracks, their record flag can be set as well.

Example plugins implementing this interface include the OSS elements (osssrc, os-
ssink, ossmixer) and the ALSA plugins (alsasrc, alsasink and alsamixer).

The Tuner interface
The tuner interface is a uniform way to control inputs and outputs on a multi-input
selection device. This is primarily used for input selection on elements for TV- and
capture-cards.

Using this interface, it is possible to select one track from a list of tracks supported by
that tuner-element. The tuner will than select that track for media-processing inter-
nally. This can, for example, be used to switch inputs on a TV-card (e.g. from Com-
posite to S-video).

This interface is currently only implemented by the Video4linux and Video4linux2
elements.

45

Chapter 13. Interfaces

The Color Balance interface
The colorbalance interface is a way to control video-related properties on an element,
such as brightness, contrast and so on. It’s sole reason for existance is that, as far as
its authors know, there’s no way to dynamically register properties using GObject.

The colorbalance interface is implemented by several plugins, including xvimagesink
and the Video4linux and Video4linux2 elements.

The Property Probe interface
The property probe is a way to autodetect allowed values for a GObject property.
It’s primary use is to autodetect devices in several elements. For example, the OSS
elements use this interface to detect all OSS devices on a system. Applications can
then “probe” this property and get a list of detected devices.

Note: Given the overlap between HAL and the practical implementations of this interface,
this might in time be deprecated in favour of HAL.

This interface is currently implemented bymany elements, including the ALSA, OSS,
XVImageSink, Video4linux and Video4linux2 elements.

The X Overlay interface
The X Overlay interface was created to solve the problem of embedding video
streams in an application window. The application provides an X-window to the
element implementing this interface to draw on, and the element will then use this
X-window to draw on rather than creating a new toplevel window. This is useful to
embed video in video players.

This interface is implemented by, amongst others, the Video4linux and Video4linux2
elements and by ximagesink, xvimagesink and sdlvideosink.

46

Chapter 14. Clocks in GStreamer

To maintain sync in pipeline playback (which is the only case where this really mat-
ters), GStreamer uses clocks. Clocks are exposed by some elements, whereas other
elements are merely clock slaves. The primary task of a clock is to represent the time
progress according to the element exposing the clock, based on its own playback rate.
If no clock provider is available in a pipeline, the system clock is used instead.

GStreamerderives several times from the clock and the playback state. It is important
to note, that a clock-time is monotonically rising, but the value itself is not meaningful.
Subtracting the base-time yields the running-time. It is the same as the stream-time if one
plays from start to end at original rate. The stream-time indicates the position in the
media.

Figure 14-1. GStreamer clock and various times

Clock providers
Clock providers exist because they play back media at some rate, and this rate is not
necessarily the same as the system clock rate. For example, a soundcard may play-
back at 44,1 kHz, but that doesn’t mean that after exactly 1 second according to the
system clock, the soundcard has played back 44.100 samples. This is only true by ap-
proximation. Therefore, generally, pipelines with an audio output use the audiosink
as clock provider. This ensures that one second of video will be played back at the
same rate as that the soundcard plays back 1 second of audio.

Whenever some part of the pipeline requires to know the current clock time, it will
be requested from the clock through gst_clock_get_time (). The clock-time does
not need to start at 0. The pipeline, which contains the global clock that all elements
in the pipeline will use, in addition has a “base time”, which is the clock time at the
the point where media time is starting from zero. This timestamp is subctracted from
the clock time, and that value is returned by _get_time ().

The clock provider is responsible for making sure that the clock time always repre-
sents the current media time as closely as possible; it has to take care of things such
as playback latencies, buffering in audio-kernel modules, and so on, since all those
could affect a/v sync and thus decrease the user experience.

Clock slaves
Clock slaves get assigned a clock by their containing pipeline. Their task is to make
sure that media playback follows the time progress as represented by this clock as
closely as possible. For most elements, that will simply mean to wait until a cer-
tain time is reached before playing back their current sample; this can be done with
the function gst_clock_id_wait (). Some elements may need to support dropping
samples too, however.

47

Chapter 14. Clocks in GStreamer

For more information on how to write elements that conform to this required be-
haviour, see the Plugin Writer’s Guide.

48

Chapter 15. Dynamic Controllable Parameters

Getting Started
The controller subsystem offers a lightweight way to adjust gobject properties over
stream-time. It works by using time-stamped value pairs that are queued for element-
properties. At run-time the elements continously pull values changes for the current
stream-time.

This subsystem is contained within the gstcontroller library. You need to include
the header in your application’s source file:

...
#include <gst/gst.h>
#include <gst/controller/gstcontroller.h>
...

Your application should link to the shared library gstreamer-controller.

The gstreamer-controller library needs to be initialized when your application is
run. This can be done after the the GStreamer library has been initialized.

...
gst_init (&argc, &argv);
gst_controller_init (&argc, &argv);
...

Setting up parameter control
The first step is to select the parameters that should be controlled. This returns a
controller object that is needed to further adjust the behaviour.

controller = gst_object_control_properties(object, "prop1", "prop2",...);

Next we can select an interpolation mode. This mode controls how inbetween values
are determined. The controller subsystem can e.g. fill gaps by smoothing parameter
changes. Each controllable GObject property can be interpolated differently.

gst_controller_set_interpolation_mode(controller,"prop1",mode);

Finally one needs to set control points. These are time-stamped GValues. The values
become active when the timestamp is reached. They still stay in the list. If e.g. the
pipeline runs a loop (using a segmented seek), the control-curve gets repeated as
well.

gst_controller_set (controller, "prop1" ,0 * GST_SECOND, value1);
gst_controller_set (controller, "prop1" ,1 * GST_SECOND, value2);

The controller subsystem has a builtin live-mode. Even though a parameter has
timestamped control-values assigned one can change the GObject property through
g_object_set(). This is highly useful when binding the GObject properties to GUI
widgets. When the user adjusts the value with the widget, one can set the GOBject
property and this remains active until the next timestamped value overrides. This
also works with smoothed parameters.

49

Chapter 15. Dynamic Controllable Parameters

50

Chapter 16. Threads

GStreamer is inherently multi-threaded, and is fully thread-safe. Most threading in-
ternals are hidden from the application, which shouldmake application development
easier. However, in some cases, applications may want to have influence on some
parts of those. GStreamer allows applications to force the use of multiple threads
over some parts of a pipeline.

When would you want to force a thread?
There are several reasons to force the use of threads. However, for performance rea-
sons, you never want to use one thread for every element out there, since that will
create some overhead. Let’s now list some situations where threads can be particu-
larly useful:

• Data buffering, for example when dealing with network streams or when record-
ing data from a live stream such as a video or audio card. Short hickups elsewhere
in the pipeline will not cause data loss.

Figure 16-1. Data buffering, from a networked source

• Synchronizing output devices, e.g. when playing a stream containing both video
and audio data. By using threads for both outputs, they will run independently
and their synchronization will be better.

Figure 16-2. Synchronizing audio and video sinks

Above, we’ve mentioned the “queue” element several times now. A queue is the
thread boundary element through which you can force the use of threads. It does
so by using a classic provider/receiver model as learned in threading classes at uni-
versities all around the world. By doing this, it acts both as a means to make data
throughput between threads threadsafe, and it can also act as a buffer. Queues have

51

Chapter 16. Threads

several GObject properties to be configured for specific uses. For example, you can
set lower and upper tresholds for the element. If there’s less data than the lower
treshold (default: disabled), it will block output. If there’s more data than the upper
treshold, it will block input or (if configured to do so) drop data.

To use a queues (and therefore force the use of two distinct threads in the pipeline),
one can simply create a “queue” element and put this in as part of the pipeline.
GStreamerwill take care of all threading details internally.

Scheduling in GStreamer

Scheduling of pipelines in GStreamer is done by using a thread for each “group”,
where a group is a set of elements separated by “queue” elements. Within such a
group, scheduling is either push-based or pull-based, depending on which mode is
supported by the particular element. If elements support random access to data, such
as file sources, then elements downstream in the pipeline become the entry point of
this group (i.e. the element controlling the scheduling of other elements). The entry
point pulls data from upstream and pushes data downstream, thereby calling data
handling functions on either type of element.

In practice, most elements in GStreamer, such as decoders, encoders, etc. only sup-
port push-based scheduling, which means that in practice, GStreamer uses a push-
based scheduling model.

52

Chapter 17. Autoplugging

In Chapter 10, you’ve learned to build a simple media player for Ogg/Vorbis files. By
using alternative elements, you are able to build media players for other media types,
such as Ogg/Speex, MP3 or even video formats. However, you would rather want to
build an application that can automatically detect the media type of a stream and au-
tomatically generate the best possible pipeline by looking at all available elements in
a system. This process is called autoplugging, and GStreamer contains high-quality
autopluggers. If you’re looking for an autoplugger, don’t read any further and go to
Chapter 19. This chapter will explain the concept of autoplugging and typefinding. It
will explain what systems GStreamer includes to dynamically detect the type of a
media stream, and how to generate a pipeline of decoder elements to playback this
media. The same principles can also be used for transcoding. Because of the full dy-
namicity of this concept, GStreamer can be automatically extended to support new
media types without needing any adaptations to its autopluggers.

We will first introduce the concept of MIME types as a dynamic and extendible way
of identifying media streams. After that, we will introduce the concept of typefinding
to find the type of a media stream. Lastly, we will explain how autoplugging and the
GStreamer registry can be used to setup a pipeline that will convert media from one
mimetype to another, for example for media decoding.

MIME-types as a way to identity streams
We have previously introduced the concept of capabilities as a way for elements (or,
rather, pads) to agree on a media type when streaming data from one element to
the next (see the Section called Capabilities of a pad in Chapter 8). We have explained
that a capability is a combination of a mimetype and a set of properties. For most
container formats (those are the files that you will find on your hard disk; Ogg, for
example, is a container format), no properties are needed to describe the stream. Only
a MIME-type is needed. A full list of MIME-types and accompanying properties can
be found in the Plugin Writer’s Guide1.

An element must associate aMIME-type to its source and sink pads when it is loaded
into the system. GStreamer knows about the different elements andwhat type of data
they expect and emit through the GStreamer registry. This allows for very dynamic
and extensible element creation as we will see.

In Chapter 10, we’ve learned to build a music player for Ogg/Vorbis files. Let’s look
at the MIME-types associated with each pad in this pipeline. Figure 17-1 shows what
MIME-type belongs to each pad in this pipeline.

Figure 17-1. The Hello world pipeline with MIME types

Now that we have an idea how GStreamer identifies known media streams, we can
look atmethods GStreamer uses to setup pipelines for media handling and formedia
type detection.

53

Chapter 17. Autoplugging

Media stream type detection
Usually, when loading a media stream, the type of the stream is not known. This
means that before we can choose a pipeline to decode the stream, we first need to
detect the stream type. GStreamer uses the concept of typefinding for this. Typefind-
ing is a normal part of a pipeline, it will read data for as long as the type of a stream
is unknown. During this period, it will provide data to all plugins that implement a
typefinder. when one of the typefinders recognizes the stream, the typefind element
will emit a signal and act as a passthrough module from that point on. If no type was
found, it will emit an error and further media processing will stop.

Once the typefind element has found a type, the application can use this to plug
together a pipeline to decode the media stream. This will be discussed in the next
section.

Plugins in GStreamer can, as mentioned before, implement typefinder functionality.
A plugin implementing this functionality will submit a mimetype, optionally a set
of file extensions commonly used for this media type, and a typefind function. Once
this typefind function inside the plugin is called, the plugin will see if the data in
this media stream matches a specific pattern that marks the media type identified
by that mimetype. If it does, it will notify the typefind element of this fact, telling
which mediatype was recognized and how certain we are that this stream is indeed
that mediatype. Once this run has been completed for all plugins implementing a
typefind functionality, the typefind element will tell the application what kind of
media stream it thinks to have recognized.

The following code should explain how to use the typefind element. It will print the
detected media type, or tell that the media type was not found. The next section will
introduce more useful behaviours, such as plugging together a decoding pipeline.

#include <gst/gst.h>

[.. my_bus_callback goes here ..]

static gboolean
idle_exit_loop (gpointer data)
{
g_main_loop_quit ((GMainLoop *) data);

/* once */
return FALSE;

}

static void
cb_typefound (GstElement *typefind,

guint probability,
GstCaps *caps,
gpointer data)

{
GMainLoop *loop = data;
gchar *type;

type = gst_caps_to_string (caps);
g_print ("Media type %s found, probability %d%%\n", type, probability);
g_free (type);

/* since we connect to a signal in the pipeline thread context, we need
* to set an idle handler to exit the main loop in the mainloop context.
* Normally, your app should not need to worry about such things. */

g_idle_add (idle_exit_loop, loop);
}

gint
main (gint argc,

gchar *argv[])

54

Chapter 17. Autoplugging

{
GMainLoop *loop;
GstElement *pipeline, *filesrc, *typefind, *fakesink;
GstBus *bus;

/* init GStreamer */
gst_init (&argc, &argv);
loop = g_main_loop_new (NULL, FALSE);

/* check args */
if (argc != 2) {

g_print ("Usage: %s <filename>\n", argv[0]);
return -1;

}

/* create a new pipeline to hold the elements */
pipeline = gst_pipeline_new ("pipe");

bus = gst_pipeline_get_bus (GST_PIPELINE (pipeline));
gst_bus_add_watch (bus, my_bus_callback, NULL);
gst_object_unref (bus);

/* create file source and typefind element */
filesrc = gst_element_factory_make ("filesrc", "source");
g_object_set (G_OBJECT (filesrc), "location", argv[1], NULL);
typefind = gst_element_factory_make ("typefind", "typefinder");
g_signal_connect (typefind, "have-type", G_CALLBACK (cb_typefound), loop);
fakesink = gst_element_factory_make ("fakesink", "sink");

/* setup */
gst_bin_add_many (GST_BIN (pipeline), filesrc, typefind, fakesink, NULL);
gst_element_link_many (filesrc, typefind, fakesink, NULL);
gst_element_set_state (GST_ELEMENT (pipeline), GST_STATE_PLAYING);
g_main_loop_run (loop);

/* unset */
gst_element_set_state (GST_ELEMENT (pipeline), GST_STATE_NULL);
gst_object_unref (GST_OBJECT (pipeline));

return 0;
}

Once a media type has been detected, you can plug an element (e.g. a demuxer or
decoder) to the source pad of the typefind element, and decoding of the media stream
will start right after.

Plugging together dynamic pipelines

Warning
The code in this section is broken, outdated and overly complicated.
Also, you should use decodebin, playbin or uridecodebin to get de-
coders plugged automatically.

In this chapter we will see how you can create a dynamic pipeline. A dynamic
pipeline is a pipeline that is updated or created while data is flowing through it.
We will create a partial pipeline first and add more elements while the pipeline is
playing. The basis of this player will be the application that we wrote in the previous
section (the Section calledMedia stream type detection) to identify unknown media
streams.

55

Chapter 17. Autoplugging

Once the type of the media has been found, we will find elements in the registry
that can decode this streamtype. For this, we will get all element factories (which
we’ve seen before in the Section called Creating a GstElement in Chapter 5) and find
the ones with the given MIME-type and capabilities on their sinkpad. Note that we
will only use parsers, demuxers and decoders. We will not use factories for any other
element types, or we might get into a loop of encoders and decoders. For this, we
will want to build a list of “allowed” factories right after initializing GStreamer.

static GList *factories;

/*
* This function is called by the registry loader. Its return value
* (TRUE or FALSE) decides whether the given feature will be included
* in the list that we’re generating further down.
*/

static gboolean
cb_feature_filter (GstPluginFeature *feature,

gpointer data)
{
const gchar *klass;
guint rank;

/* we only care about element factories */
if (!GST_IS_ELEMENT_FACTORY (feature))

return FALSE;

/* only parsers, demuxers and decoders */
klass = gst_element_factory_get_klass (GST_ELEMENT_FACTORY (feature));
if (g_strrstr (klass, "Demux") == NULL &&

g_strrstr (klass, "Decoder") == NULL &&
g_strrstr (klass, "Parse") == NULL)

return FALSE;

/* only select elements with autoplugging rank */
rank = gst_plugin_feature_get_rank (feature);
if (rank < GST_RANK_MARGINAL)

return FALSE;

return TRUE;
}

/*
* This function is called to sort features by rank.
*/

static gint
cb_compare_ranks (GstPluginFeature *f1,

GstPluginFeature *f2)
{
return gst_plugin_feature_get_rank (f2) - gst_plugin_feature_get_rank (f1);

}

static void
init_factories (void)
{
/* first filter out the interesting element factories */
factories = gst_registry_feature_filter (

gst_registry_get_default (),
(GstPluginFeatureFilter) cb_feature_filter, FALSE, NULL);

/* sort them according to their ranks */
factories = g_list_sort (factories, (GCompareFunc) cb_compare_ranks);

}

56

Chapter 17. Autoplugging

From this list of element factories, we will select the one that most likely will
help us decoding a media stream to a given output type. For each newly
created element, we will again try to autoplug new elements to its source
pad(s). Also, if the element has dynamic pads (which we’ve seen before in
the Section called Dynamic (or sometimes) pads in Chapter 8), we will listen for
newly created source pads and handle those, too. The following code replaces the
cb_type_found from the previous section with a function to initiate autoplugging,
which will continue with the above approach.

static void try_to_plug (GstPad *pad, const GstCaps *caps);

static GstElement *audiosink;

static void
cb_newpad (GstElement *element,

GstPad *pad,
gpointer data)

{
GstCaps *caps;

caps = gst_pad_get_caps (pad);
try_to_plug (pad, caps);
gst_caps_unref (caps);

}

static void
close_link (GstPad *srcpad,

GstElement *sinkelement,
const gchar *padname,
const GList *templlist)

{
GstPad *pad;
gboolean has_dynamic_pads = FALSE;

g_print ("Plugging pad %s:%s to newly created %s:%s\n",
gst_object_get_name (GST_OBJECT (gst_pad_get_parent (srcpad))),
gst_pad_get_name (srcpad),
gst_object_get_name (GST_OBJECT (sinkelement)), padname);

/* add the element to the pipeline and set correct state */
if (sinkelement != audiosink) {

gst_bin_add (GST_BIN (pipeline), sinkelement);
gst_element_set_state (sinkelement, GST_STATE_READY);

}
pad = gst_element_get_static_pad (sinkelement, padname);
gst_pad_link (srcpad, pad);
if (sinkelement != audiosink) {

gst_element_set_state (sinkelement, GST_STATE_PAUSED);
}
gst_object_unref (GST_OBJECT (pad));

/* if we have static source pads, link those. If we have dynamic
* source pads, listen for pad-added signals on the element */

for (; templlist != NULL; templlist = templlist->next) {
GstStaticPadTemplate *templ = templlist->data;

/* only sourcepads, no request pads */
if (templ->direction != GST_PAD_SRC ||

templ->presence == GST_PAD_REQUEST) {
continue;

}

switch (templ->presence) {
case GST_PAD_ALWAYS: {
GstPad *pad = gst_element_get_static_pad (sinkelement, templ->name_template);

57

Chapter 17. Autoplugging

GstCaps *caps = gst_pad_get_caps (pad);

/* link */
try_to_plug (pad, caps);
gst_object_unref (GST_OBJECT (pad));
gst_caps_unref (caps);
break;

}
case GST_PAD_SOMETIMES:
has_dynamic_pads = TRUE;
break;

default:
break;

}
}

/* listen for newly created pads if this element supports that */
if (has_dynamic_pads) {

g_signal_connect (sinkelement, "pad-added", G_CALLBACK (cb_newpad), NULL);
}

}

static void
try_to_plug (GstPad *pad,

const GstCaps *caps)
{
GstObject *parent = GST_OBJECT (GST_OBJECT_PARENT (pad));
const gchar *mime;
const GList *item;
GstCaps *res, *audiocaps;

/* don’t plug if we’re already plugged - FIXME: memleak for pad */
if (GST_PAD_IS_LINKED (gst_element_get_static_pad (audiosink, "sink"))) {

g_print ("Omitting link for pad %s:%s because we’re already linked\n",
GST_OBJECT_NAME (parent), GST_OBJECT_NAME (pad));

return;
}

/* as said above, we only try to plug audio... Omit video */
mime = gst_structure_get_name (gst_caps_get_structure (caps, 0));
if (g_strrstr (mime, "video")) {

g_print ("Omitting link for pad %s:%s because mimetype %s is non-audio\n",
GST_OBJECT_NAME (parent), GST_OBJECT_NAME (pad), mime);

return;
}

/* can it link to the audiopad? */
audiocaps = gst_pad_get_caps (gst_element_get_static_pad (audiosink, "sink"));
res = gst_caps_intersect (caps, audiocaps);
if (res && !gst_caps_is_empty (res)) {

g_print ("Found pad to link to audiosink - plugging is now done\n");
close_link (pad, audiosink, "sink", NULL);
gst_caps_unref (audiocaps);
gst_caps_unref (res);
return;

}
gst_caps_unref (audiocaps);
gst_caps_unref (res);

/* try to plug from our list */
for (item = factories; item != NULL; item = item->next) {

GstElementFactory *factory = GST_ELEMENT_FACTORY (item->data);
const GList *pads;

for (pads = gst_element_factory_get_static_pad_templates (factory);
pads != NULL; pads = pads->next) {

58

Chapter 17. Autoplugging

GstStaticPadTemplate *templ = pads->data;

/* find the sink template - need an always pad*/
if (templ->direction != GST_PAD_SINK ||

templ->presence != GST_PAD_ALWAYS) {
continue;

}

/* can it link? */
res = gst_caps_intersect (caps,

gst_static_caps_get (&templ->static_caps));
if (res && !gst_caps_is_empty (res)) {
GstElement *element;
gchar *name_template = g_strdup (templ->name_template);

/* close link and return */
gst_caps_unref (res);
element = gst_element_factory_create (factory, NULL);
close_link (pad, element, name_template,

gst_element_factory_get_static_pad_templates (factory));
g_free (name_template);
return;

}
gst_caps_unref (res);

/* we only check one sink template per factory, so move on to the
* next factory now */
break;

}
}

/* if we get here, no item was found */
g_print ("No compatible pad found to decode %s on %s:%s\n",

mime, GST_OBJECT_NAME (parent), GST_OBJECT_NAME (pad));
}

static void
cb_typefound (GstElement *typefind,

guint probability,
GstCaps *caps,
gpointer data)

{
gchar *s;
GstPad *pad;

s = gst_caps_to_string (caps);
g_print ("Detected media type %s\n", s);
g_free (s);

/* actually plug now */
pad = gst_element_get_static_pad (typefind, "src");
try_to_plug (pad, caps);
gst_object_unref (GST_OBJECT (pad));

}

By doing all this, we will be able tomake a simple autoplugger that can automatically
setup a pipeline for any media type. In the example below, we will do this for audio
only. However, we can also do this for video to create a player that plays both audio
and video.

The example above is a good first try for an autoplugger. Next steps would be to lis-
ten for “pad-removed” signals, so we can dynamically change the plugged pipeline
if the stream changes (this happens for DVB or Ogg radio). Also, you might want
special-case code for input with known content (such as a DVD or an audio-CD),
and much, much more. Moreover, you’ll want many checks to prevent infinite loops

59

Chapter 17. Autoplugging

during autoplugging, maybe you’ll want to implement shortest-path-finding tomake
sure the most optimal pipeline is chosen, and so on. Basically, the features that you
implement in an autoplugger depend on what you want to use it for. For full-blown
implementations, see the “playbin” and “decodebin” elements.

Notes
1. http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/section-

types-definitions.html

60

Chapter 18. Pipeline manipulation

This chapter will discuss how you canmanipulate your pipeline in several ways from
your application on. Parts of this chapter are downright hackish, so be assured that
you’ll need some programming knowledge before you start reading this.

Topics that will be discussed here include how you can insert data into a pipeline
from your application, how to read data from a pipeline, how to manipulate the
pipeline’s speed, length, starting point and how to listen to a pipeline’s data pro-
cessing.

Data probing
Probing is best envisioned as a pad listener. Technically, a probe is nothing more
than a signal callback that can be attached to a pad. Those signals are by default
not fired at all (since that may have a negative impact on performance), but
can be enabled by attaching a probe using gst_pad_add_buffer_probe (),
gst_pad_add_event_probe (), or gst_pad_add_data_probe (). Those functions
attach the signal handler and enable the actual signal emission. Similarly, one can
use the gst_pad_remove_buffer_probe (), gst_pad_remove_event_probe (), or
gst_pad_remove_data_probe () to remove the signal handlers again.

Probes run in pipeline threading context, so callbacks should try to not block and gen-
erally not do any weird stuff, since this could have a negative impact on pipeline per-
formance or, in case of bugs, cause deadlocks or crashes. More precisely, one should
usually not call any GUI-related functions from within a probe callback, nor try to
change the state of the pipeline. An application may post custom messages on the
pipeline’s bus though to communicate with the main application thread and have it
do things like stop the pipeline.

In any case, most common buffer operations that elements can do in _chain () func-
tions, can be done in probe callbacks as well. The example below gives a short im-
pression on how to use them (even if this usage is not entirely correct, but more on
that below):

#include <gst/gst.h>

static gboolean
cb_have_data (GstPad *pad,

GstBuffer *buffer,
gpointer u_data)

{
gint x, y;
guint16 *data = (guint16 *) GST_BUFFER_DATA (buffer), t;

/* invert data */
for (y = 0; y < 288; y++) {

for (x = 0; x < 384 / 2; x++) {
t = data[384 - 1 - x];
data[384 - 1 - x] = data[x];
data[x] = t;

}
data += 384;

}

return TRUE;
}

gint
main (gint argc,

gchar *argv[])
{
GMainLoop *loop;

61

Chapter 18. Pipeline manipulation

GstElement *pipeline, *src, *sink, *filter, *csp;
GstCaps *filtercaps;
GstPad *pad;

/* init GStreamer */
gst_init (&argc, &argv);
loop = g_main_loop_new (NULL, FALSE);

/* build */
pipeline = gst_pipeline_new ("my-pipeline");
src = gst_element_factory_make ("videotestsrc", "src");
if (src == NULL)

g_error ("Could not create ’videotestsrc’ element");

filter = gst_element_factory_make ("capsfilter", "filter");
g_assert (filter != NULL); /* should always exist */

csp = gst_element_factory_make ("ffmpegcolorspace", "csp");
if (csp == NULL)

g_error ("Could not create ’ffmpegcolorspace’ element");

sink = gst_element_factory_make ("xvimagesink", "sink");
if (sink == NULL) {

sink = gst_element_factory_make ("ximagesink", "sink");
if (sink == NULL)

g_error ("Could not create neither ’xvimagesink’ nor ’ximagesink’ element");
}

gst_bin_add_many (GST_BIN (pipeline), src, filter, csp, sink, NULL);
gst_element_link_many (src, filter, csp, sink, NULL);
filtercaps = gst_caps_new_simple ("video/x-raw-rgb",

"width", G_TYPE_INT, 384,
"height", G_TYPE_INT, 288,
"framerate", GST_TYPE_FRACTION, 25, 1,
"bpp", G_TYPE_INT, 16,
"depth", G_TYPE_INT, 16,
"endianness", G_TYPE_INT, G_BYTE_ORDER,
NULL);

g_object_set (G_OBJECT (filter), "caps", filtercaps, NULL);
gst_caps_unref (filtercaps);

pad = gst_element_get_pad (src, "src");
gst_pad_add_buffer_probe (pad, G_CALLBACK (cb_have_data), NULL);
gst_object_unref (pad);

/* run */
gst_element_set_state (pipeline, GST_STATE_PLAYING);

/* wait until it’s up and running or failed */
if (gst_element_get_state (pipeline, NULL, NULL, -1) == GST_STATE_CHANGE_FAILURE) {

g_error ("Failed to go into PLAYING state");
}

g_print ("Running ...\n");
g_main_loop_run (loop);

/* exit */
gst_element_set_state (pipeline, GST_STATE_NULL);
gst_object_unref (pipeline);

return 0;
}

Compare that output with the output of “gst-launch-0.10 videotestsrc !
xvimagesink”, just so you know what you’re looking for.

62

Chapter 18. Pipeline manipulation

The above example is not really correct though. Strictly speaking, a pad probe
callback is only allowed to modify the buffer content if the buffer is writable, and
it is only allowed to modify buffer metadata like timestamps, caps, etc. if the
buffer metadata is writable. Whether this is the case or not depends a lot on the
pipeline and the elements involved. Often enough, this is the case, but sometimes it
is not, and if it is not then unexpected modification of the data or metadata can
introduce bugs that are very hard to debug and track down. You can check if a
buffer and its metadata are writable with gst_buffer_is_writable () and
gst_buffer_is_metadata_writable (). Since you can’t pass back a different
buffer than the one passed in, there is no point of making a buffer writable in the
callback function.

Pad probes are suited best for looking at data as it passes through the pipeline. If you
need to modify data, you should write your own GStreamer element. Base classes
like GstAudioFilter, GstVideoFilter or GstBaseTransform make this fairly easy.

If you just want to inspect buffers as they pass through the pipeline, you don’t even
need to set up pad probes. You could also just insert an identity element into the
pipeline and connect to its "handoff" signal. The identity element also provides a few
useful debugging tools like the "dump" property or the "last-message" property (the
latter is enabled by passing the ’-v’ switch to gst-launch).

Manually adding or removing data from/to a pipeline
Many people have expressed the wish to use their own sources to inject data into a
pipeline. Some people have also expressed the wish to grab the output in a pipeline
and take care of the actual output inside their application. While either of these meth-
ods are stongly discouraged, GStreamer offers hacks to do this. However, there is no
support for those methods. If it doesn’t work, you’re on your own. Also, synchroniza-
tion, thread-safety and other things that you’ve been able to take for granted so far
are no longer guaranteed if you use any of those methods. It’s always better to sim-
ply write a plugin and have the pipeline schedule and manage it. See the Plugin
Writer’s Guide for more information on this topic. Also see the next section, which
will explain how to embed plugins statically in your application.

Note: New API is being developed at the moment to make data insertion and extraction
less painful for applications. It can be found as GstAppSrc and GstAppSink in the gst-
plugins-bad module. At the time of writing (October 2007), this API is not quite stable and
ready yet, even though it may work fine for your purposes.

After all those disclaimers, let’s start. There’s three possible elements that you can use
for the above-mentioned purposes. Those are called “fakesrc” (an imaginary source),
“fakesink” (an imaginary sink) and “identity” (an imaginary filter). The samemethod
applies to each of those elements. Here, we will discuss how to use those elements
to insert (using fakesrc) or grab (using fakesink or identity) data from a pipeline, and
how to set negotiation.

Those who’re paying close attention, will notice that the purpose of identity is almost
identical to that of probes. Indeed, this is true. Probes allow for the same purpose, and
a bunch more, and with less overhead plus dynamic removing/adding of handlers,
but apart from those, probes and identity have the same purpose, just in a completely
different implementation type.

Inserting or grabbing data
The three before-mentioned elements (fakesrc, fakesink and identity) each have a
“handoff” signal that will be called in the _get ()- (fakesrc) or _chain ()-function
(identity, fakesink). In the signal handler, you can set (fakesrc) or get (identity,

63

Chapter 18. Pipeline manipulation

fakesink) data to/from the provided buffer. Note that in the case of fakesrc, you
have to set the size of the provided buffer using the “sizemax” property. For both
fakesrc and fakesink, you also have to set the “signal-handoffs” property for this
method to work.

Note that your handoff function should not block, since this will block pipeline iter-
ation. Also, do not try to use all sort of weird hacks in such functions to accomplish
something that looks like synchronization or so; it’s not the right way and will lead
to issues elsewhere. If you’re doing any of this, you’re basically misunderstanding
the GStreamer design.

Forcing a format
Sometimes, when using fakesrc as a source in your pipeline, you’ll want to set a spe-
cific format, for example a video size and format or an audio bitsize and number of
channels. You can do this by forcing a specific GstCaps on the pipeline, which is pos-
sible by using filtered caps. You can set a filtered caps on a link by using the “capsfilter”
element in between the two elements, and specifying a GstCaps as “caps” property
on this element. It will then only allow types matching that specified capability set
for negotiation.

Example application
This example application will generate black/white (it switches every second) video
to an X-window output by using fakesrc as a source and using filtered caps to force
a format. Since the depth of the image depends on your X-server settings, we use
a colorspace conversion element to make sure that the output to your X server will
have the correct bitdepth. You can also set timestamps on the provided buffers to
override the fixed framerate.

#include <string.h> /* for memset () */
#include <gst/gst.h>

static void
cb_handoff (GstElement *fakesrc,

GstBuffer *buffer,
GstPad *pad,
gpointer user_data)

{
static gboolean white = FALSE;

/* this makes the image black/white */
memset (GST_BUFFER_DATA (buffer), white ? 0xff : 0x0,
GST_BUFFER_SIZE (buffer));

white = !white;
}

gint
main (gint argc,

gchar *argv[])
{
GstElement *pipeline, *fakesrc, *flt, *conv, *videosink;
GMainLoop *loop;

/* init GStreamer */
gst_init (&argc, &argv);
loop = g_main_loop_new (NULL, FALSE);

/* setup pipeline */
pipeline = gst_pipeline_new ("pipeline");
fakesrc = gst_element_factory_make ("fakesrc", "source");

64

Chapter 18. Pipeline manipulation

flt = gst_element_factory_make ("capsfilter", "flt");
conv = gst_element_factory_make ("ffmpegcolorspace", "conv");
videosink = gst_element_factory_make ("xvimagesink", "videosink");

/* setup */
g_object_set (G_OBJECT (flt), "caps",

gst_caps_new_simple ("video/x-raw-rgb",
"width", G_TYPE_INT, 384,
"height", G_TYPE_INT, 288,
"framerate", GST_TYPE_FRACTION, 1, 1,
"bpp", G_TYPE_INT, 16,
"depth", G_TYPE_INT, 16,
"endianness", G_TYPE_INT, G_BYTE_ORDER,
NULL), NULL);

gst_bin_add_many (GST_BIN (pipeline), fakesrc, flt, conv, videosink, NULL);
gst_element_link_many (fakesrc, flt, conv, videosink, NULL);

/* setup fake source */
g_object_set (G_OBJECT (fakesrc),
"signal-handoffs", TRUE,
"sizemax", 384 * 288 * 2,
"sizetype", 2, NULL);
g_signal_connect (fakesrc, "handoff", G_CALLBACK (cb_handoff), NULL);

/* play */
gst_element_set_state (pipeline, GST_STATE_PLAYING);
g_main_loop_run (loop);

/* clean up */
gst_element_set_state (pipeline, GST_STATE_NULL);
gst_object_unref (GST_OBJECT (pipeline));

return 0;
}

Embedding static elements in your application
The Plugin Writer’s Guide1 describes in great detail how to write elements for the
GStreamer framework. In this section, we will solely discuss how to embed such
elements statically in your application. This can be useful for application-specific el-
ements that have no use elsewhere in GStreamer.

Dynamically loaded plugins contain a structure that’s defined using
GST_PLUGIN_DEFINE (). This structure is loaded when the plugin is loaded by the
GStreamer core. The structure contains an initialization function (usually called
plugin_init) that will be called right after that. It’s purpose is to register the
elements provided by the plugin with the GStreamer framework. If you want to
embed elements directly in your application, the only thing you need to do is to
replace GST_PLUGIN_DEFINE () with GST_PLUGIN_DEFINE_STATIC (). This will
cause the elements to be registered when your application loads, and the elements
will from then on be available like any other element, without them having to be
dynamically loadable libraries. In the example below, you would be able to call
gst_element_factory_make ("my-element-name", "some-name") to create an
instance of the element.

/*
* Here, you would write the actual plugin code.
*/

[..]

65

Chapter 18. Pipeline manipulation

static gboolean
register_elements (GstPlugin *plugin)
{
return gst_element_register (plugin, "my-element-name",

GST_RANK_NONE, MY_PLUGIN_TYPE);
}

GST_PLUGIN_DEFINE_STATIC (
GST_VERSION_MAJOR,
GST_VERSION_MINOR,
"my-private-plugins",
"Private elements of my application",
register_elements,
VERSION,
"LGPL",
"my-application",
"http://www.my-application.net/"

)

Notes
1. http://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/index.html

66

Chapter 19. Components

GStreamer includes several higher-level components to simplify an application
developer’s life. All of the components discussed here (for now) are targetted at
media playback. The idea of each of these components is to integrate as closely
as possible with a GStreamer pipeline, but to hide the complexity of media type
detection and several other rather complex topics that have been discussed in
Part III in GStreamer Application Development Manual (0.10.23.1).

We currently recommend people to use either playbin (see the Section called Playbin)
or decodebin (see the Section called Decodebin), depending on their needs. Playbin is
the recommended solution for everything related to simple playback of media that
should just work. Decodebin is a more flexible autoplugger that could be used to add
more advanced features, such as playlist support, crossfading of audio tracks and so
on. Its programming interface is more low-level than that of playbin, though.

Playbin
Playbin is an element that can be created using the standard GStreamer API (e.g.
gst_element_factory_make ()). The factory is conveniently called “playbin”. By
being a GstPipeline (and thus a GstElement), playbin automatically supports all
of the features of this class, including error handling, tag support, state handling,
getting stream positions, seeking, and so on.

Setting up a playbin pipeline is as simple as creating an instance of the playbin
element, setting a file location using the “uri” property on playbin, and then
setting the element to the GST_STATE_PLAYING state (the location has to
be a valid URI, so “<protocol>://<location>”, e.g. file:///tmp/my.ogg or
http://www.example.org/stream.ogg). Internally, playbin will set up a pipeline to
playback the media location.

#include <gst/gst.h>

[.. my_bus_callback goes here ..]

gint
main (gint argc,

gchar *argv[])
{
GMainLoop *loop;
GstElement *play;
GstBus *bus;

/* init GStreamer */
gst_init (&argc, &argv);
loop = g_main_loop_new (NULL, FALSE);

/* make sure we have a URI */
if (argc != 2) {

g_print ("Usage: %s <URI>\n", argv[0]);
return -1;

}

/* set up */
play = gst_element_factory_make ("playbin", "play");
g_object_set (G_OBJECT (play), "uri", argv[1], NULL);

bus = gst_pipeline_get_bus (GST_PIPELINE (play));
gst_bus_add_watch (bus, my_bus_callback, loop);
gst_object_unref (bus);

gst_element_set_state (play, GST_STATE_PLAYING);

67

Chapter 19. Components

/* now run */
g_main_loop_run (loop);

/* also clean up */
gst_element_set_state (play, GST_STATE_NULL);
gst_object_unref (GST_OBJECT (play));

return 0;
}

Playbin has several features that have been discussed previously:

• Settable video and audio output (using the “video-sink” and “audio-sink” proper-
ties).

• Mostly controllable and trackable as a GstElement, including error handling, eos
handling, tag handling, state handling (through the GstBus), media position han-
dling and seeking.

• Buffers network-sources, with buffer fullness notifications being passed through
the GstBus.

• Supports visualizations for audio-only media.

• Supports subtitles, both in the media as well as from separate files. For separate
subtitle files, use the “suburi” property.

• Supports stream selection and disabling. If your media has multiple audio or sub-
title tracks, you can dynamically choose which one to play back, or decide to turn
it off alltogther (which is especially useful to turn off subtitles). For each of those,
use the “current-text” and other related properties.

For convenience, it is possible to test “playbin” on the commandline, using the com-
mand “gst-launch-0.10 playbin uri=file:///path/to/file”.

New applications should use playbin2 instead of the old playbin.

Decodebin
Decodebin is the actual autoplugger backend of playbin, which was discussed in the
previous section. Decodebin will, in short, accept input from a source that is linked
to its sinkpad and will try to detect the media type contained in the stream, and
set up decoder routines for each of those. It will automatically select decoders. For
each decoded stream, it will emit the “new-decoded-pad” signal, to let the client
know about the newly found decoded stream. For unknown streams (which might
be the whole stream), it will emit the “unknown-type” signal. The application is then
responsible for reporting the error to the user.

#include <gst/gst.h>

[.. my_bus_callback goes here ..]

GstElement *pipeline, *audio;

static void
cb_newpad (GstElement *decodebin,

GstPad *pad,
gboolean last,
gpointer data)

{
GstCaps *caps;
GstStructure *str;
GstPad *audiopad;

68

Chapter 19. Components

/* only link once */
audiopad = gst_element_get_static_pad (audio, "sink");
if (GST_PAD_IS_LINKED (audiopad)) {

g_object_unref (audiopad);
return;

}

/* check media type */
caps = gst_pad_get_caps (pad);
str = gst_caps_get_structure (caps, 0);
if (!g_strrstr (gst_structure_get_name (str), "audio")) {

gst_caps_unref (caps);
gst_object_unref (audiopad);
return;

}
gst_caps_unref (caps);

/* link’n’play */
gst_pad_link (pad, audiopad);

}

gint
main (gint argc,

gchar *argv[])
{
GMainLoop *loop;
GstElement *src, *dec, *conv, *sink;
GstPad *audiopad;
GstBus *bus;

/* init GStreamer */
gst_init (&argc, &argv);
loop = g_main_loop_new (NULL, FALSE);

/* make sure we have input */
if (argc != 2) {

g_print ("Usage: %s <filename>\n", argv[0]);
return -1;

}

/* setup */
pipeline = gst_pipeline_new ("pipeline");

bus = gst_pipeline_get_bus (GST_PIPELINE (pipeline));
gst_bus_add_watch (bus, my_bus_callback, loop);
gst_object_unref (bus);

src = gst_element_factory_make ("filesrc", "source");
g_object_set (G_OBJECT (src), "location", argv[1], NULL);
dec = gst_element_factory_make ("decodebin", "decoder");
g_signal_connect (dec, "new-decoded-pad", G_CALLBACK (cb_newpad), NULL);
gst_bin_add_many (GST_BIN (pipeline), src, dec, NULL);
gst_element_link (src, dec);

/* create audio output */
audio = gst_bin_new ("audiobin");
conv = gst_element_factory_make ("audioconvert", "aconv");
audiopad = gst_element_get_static_pad (conv, "sink");
sink = gst_element_factory_make ("alsasink", "sink");
gst_bin_add_many (GST_BIN (audio), conv, sink, NULL);
gst_element_link (conv, sink);
gst_element_add_pad (audio,

gst_ghost_pad_new ("sink", audiopad));
gst_object_unref (audiopad);
gst_bin_add (GST_BIN (pipeline), audio);

69

Chapter 19. Components

/* run */
gst_element_set_state (pipeline, GST_STATE_PLAYING);
g_main_loop_run (loop);

/* cleanup */
gst_element_set_state (pipeline, GST_STATE_NULL);
gst_object_unref (GST_OBJECT (pipeline));

return 0;
}

Decodebin, similar to playbin, supports the following features:

• Can decode an unlimited number of contained streams to decoded output pads.

• Is handled as a GstElement in all ways, including tag or error forwarding and state
handling.

Although decodebin is a good autoplugger, there’s a whole lot of things that it does
not do and is not intended to do:

• Taking care of input streams with a known media type (e.g. a DVD, an audio-CD
or such).

• Selection of streams (e.g. which audio track to play in case of multi-languagemedia
streams).

• Overlaying subtitles over a decoded video stream.

Decodebin can be easily tested on the commandline, e.g. by using the command gst-
launch-0.10 filesrc location=file.ogg ! decodebin ! audioconvert ! audioresample !
autoaudiosink.

New applications should use decodebin2 instead of the old decodebin.

The uridecodebin element is very similar to decodebin2, only that it automatically
plugs a source plugin based on the protocol of the URI given.

70

Chapter 20. XML in GStreamer

GStreamer can use XML to store and load its pipeline definitions.

We will show you how you can save a pipeline to XML and how you can reload that
XML file again for later use.

Turning GstElements into XML
We create a simple pipeline and write it to stdout with gst_xml_write_file (). The
following code constructs an MP3 player pipeline and then writes out the XML both
to stdout and to a file. Use this program with one argument: the MP3 file on disk.

#include <stdlib.h>
#include <gst/gst.h>

gboolean playing;

int
main (int argc, char *argv[])
{
GstElement *filesrc, *osssink, *decode;
GstElement *pipeline;

gst_init (&argc,&argv);

if (argc != 2) {
g_print ("usage: %s <mp3 filename>\n", argv[0]);
exit (-1);

}

/* create a new pipeline to hold the elements */
pipeline = gst_element_factory_make ("pipeline", "pipeline");
g_assert (pipeline != NULL);

/* create a disk reader */
filesrc = gst_element_factory_make ("filesrc", "disk_source");
g_assert (filesrc != NULL);
g_object_set (G_OBJECT (filesrc), "location", argv[1], NULL);

/* and an audio sink */
osssink = gst_element_factory_make ("osssink", "play_audio");
g_assert (osssink != NULL);

decode = gst_element_factory_make ("mad", "decode");
g_assert (decode != NULL);

/* add objects to the main pipeline */
gst_bin_add_many (GST_BIN (pipeline), filesrc, decode, osssink, NULL);

gst_element_link_many (filesrc, decode, osssink, NULL);

/* write the pipeline to stdout */
gst_xml_write_file (GST_ELEMENT (pipeline), stdout);

/* write the bin to a file */
gst_xml_write_file (GST_ELEMENT (pipeline), fopen ("xmlTest.gst", "w"));

exit (0);
}

71

Chapter 20. XML in GStreamer

The most important line is:

gst_xml_write_file (GST_ELEMENT (pipeline), stdout);

gst_xml_write_file () will turn the given element into an xmlDocPtr that is then for-
matted and saved to a file. To save to disk, pass the result of a fopen(2) as the second
argument.

The complete element hierarchy will be saved along with the inter element pad links
and the element parameters. Future GStreamer versions will also allow you to store
the signals in the XML file.

Loading a GstElement from an XML file
Before an XML file can be loaded, youmust create a GstXML object. A saved XML file
can then be loaded with the gst_xml_parse_file (xml, filename, rootelement) method.
The root element can optionally left NULL. The following code example loads the
previously created XML file and runs it.

#include <stdlib.h>
#include <gst/gst.h>

int
main(int argc, char *argv[])
{
GstXML *xml;
GstElement *pipeline;
gboolean ret;

gst_init (&argc, &argv);

xml = gst_xml_new ();

ret = gst_xml_parse_file(xml, "xmlTest.gst", NULL);
g_assert (ret == TRUE);

pipeline = gst_xml_get_element (xml, "pipeline");
g_assert (pipeline != NULL);

gst_element_set_state (pipeline, GST_STATE_PLAYING);

g_sleep (4);

gst_element_set_state (pipeline, GST_STATE_NULL);

exit (0);
}

gst_xml_get_element (xml, "name") can be used to get a specific element from the
XML file.

gst_xml_get_topelements (xml) can be used to get a list of all toplevel elements in the
XML file.

In addition to loading a file, you can also load from a xmlDocPtr and an in-memory
buffer using gst_xml_parse_doc and gst_xml_parse_memory respectively. Both of
these methods return a gboolean indicating success or failure of the requested ac-
tion.

72

Chapter 20. XML in GStreamer

Adding custom XML tags into the core XML data
It is possible to add custom XML tags to the core XML created with gst_xml_write.
This feature can be used by an application to add more information to the save plug-
ins. The editor will for example insert the position of the elements on the screen using
the custom XML tags.

It is strongly suggested to save and load the custom XML tags using a namespace.
This will solve the problem of having your XML tags interfere with the core XML
tags.

To insert a hook into the element saving procedure you can link a signal to the GstEle-
ment using the following piece of code:

xmlNsPtr ns;

...
ns = xmlNewNs (NULL, "http://gstreamer.net/gst-test/1.0/", "test");

...
pipeline = gst_element_factory_make ("pipeline", "pipeline");
g_signal_connect (G_OBJECT (pipeline), "object_saved",

G_CALLBACK (object_saved), g_strdup ("decoder pipeline"));
...

When the thread is saved, the object_save method will be called. Our example will
insert a comment tag:

static void
object_saved (GstObject *object, xmlNodePtr parent, gpointer data)
{
xmlNodePtr child;

child = xmlNewChild (parent, ns, "comment", NULL);
xmlNewChild (child, ns, "text", (gchar *)data);

}

Adding the custom tag code to the above example you will get an XML file with the
custom tags in it. Here’s an excerpt:

...
<gst:element>

<gst:name>pipeline</gst:name>
<gst:type>pipeline</gst:type>
<gst:version>0.1.0</gst:version>

...
</gst:children>
<test:comment>

<test:text>decoder pipeline</test:text>
</test:comment>

</gst:element>
...

To retrieve the custom XML again, you need to attach a signal to the GstXML object
used to load the XML data. You can then parse your custom XML from the XML tree
whenever an object is loaded.

We can extend our previous example with the following piece of code.

xml = gst_xml_new ();

g_signal_connect (G_OBJECT (xml), "object_loaded",
G_CALLBACK (xml_loaded), xml);

73

Chapter 20. XML in GStreamer

ret = gst_xml_parse_file (xml, "xmlTest.gst", NULL);
g_assert (ret == TRUE);

Whenever a new object has been loaded, the xml_loaded function will be called. This
function looks like:

static void
xml_loaded (GstXML *xml, GstObject *object, xmlNodePtr self, gpointer data)
{
xmlNodePtr children = self->xmlChildrenNode;

while (children) {
if (!strcmp (children->name, "comment")) {

xmlNodePtr nodes = children->xmlChildrenNode;

while (nodes) {
if (!strcmp (nodes->name, "text")) {

gchar *name = g_strdup (xmlNodeGetContent (nodes));
g_print ("object %s loaded with comment ’%s’\n",

gst_object_get_name (object), name);
}
nodes = nodes->next;

}
}
children = children->next;

}
}

As you can see, you’ll get a handle to the GstXML object, the newly loaded GstObject
and the xmlNodePtr that was used to create this object. In the above example we look
for our special tag inside the XML tree that was used to load the object and we print
our comment to the console.

74

Chapter 21. Things to check when writing an application

This chapter contains a fairly random selection of things that can be useful to keep in
mind when writing GStreamer-based applications. It’s up to you how much you’re
going to use the information provided here. We will shortly discuss how to debug
pipeline problems using GStreamer applications. Also, we will touch upon how to
acquire knowledge about plugins and elements and how to test simple pipelines be-
fore building applications around them.

Good programming habits

• Always add a GstBus handler to your pipeline. Always report errors in your ap-
plication, and try to do something with warnings and information messages, too.

• Always check return values of GStreamer functions. Especially, check return val-
ues of gst_element_link () and gst_element_set_state ().

• Dereference return values of all functions returning a non-base type, such as
gst_element_get_pad (). Also, always free non-const string returns, such as
gst_object_get_name ().

• Always use your pipeline object to keep track of the current state of your pipeline.
Don’t keep private variables in your application. Also, don’t update your user in-
terface if a user presses the “play” button. Instead, listen for the “state-changed”
message on the GstBus and only update the user interface whenever this message
is received.

• Report all bugs that you find in GStreamer bugzilla at
http://bugzilla.gnome.org/1.

Debugging
Applications can make use of the extensive GStreamer debugging system to debug
pipeline problems. Elements will write output to this system to log what they’re do-
ing. It’s not used for error reporting, but it is very useful for trackingwhat an element
is doing exactly, which can come in handy when debugging application issues (such
as failing seeks, out-of-sync media, etc.).

Most GStreamer-based applications accept the commandline option
--gst-debug=LIST and related family members. The list consists of a
comma-separated list of category/level pairs, which can set the debugging level for
a specific debugging category. For example, --gst-debug=oggdemux:5 would turn
on debugging for the Ogg demuxer element. You can use wildcards as well. A
debugging level of 0 will turn off all debugging, and a level of 5 will turn on all
debugging. Intermediate values only turn on some debugging (based on message
severity; 2, for example, will only display errors and warnings). Here’s a list of all
available options:

• --gst-debug-helpwill print available debug categories and exit.

• --gst-debug-level=LEVELwill set the default debug level (which can range from
0 (no output) to 5 (everything)).

• --gst-debug=LIST takes a comma-separated list of category_name:level
pairs to set specific levels for the individual categories. Example:
GST_AUTOPLUG:5,avidemux:3. Alternatively, you can also set the GST_DEBUG
environment variable, which has the same effect.

• --gst-debug-no-color will disable color debugging You can also set the
GST_DEBUG_NO_COLOR environment variable to 1 if you want to disable

75

Chapter 21. Things to check when writing an application

colored debug output permanently. Note that if you are disabling color purely to
avoid messing up your pager output, trying using less -R.

• --gst-debug-disable disables debugging altogether.

• --gst-plugin-spew enables printout of errors while loading GStreamer plugins.

Conversion plugins
GStreamer contains a bunch of conversion plugins that most applications will find
useful. Specifically, those are videoscalers (videoscale), colorspace convertors (ffm-
pegcolorspace), audio format convertors and channel resamplers (audioconvert) and
audio samplerate convertors (audioresample). Those convertors don’t do anything
when not required, they will act in passthrough mode. They will activate when the
hardware doesn’t support a specific request, though. All applications are recom-
mended to use those elements.

Utility applications provided with GStreamer

GStreamer comes with a default set of command-line utilities that can help in appli-
cation development. We will discuss only gst-launch and gst-inspect here.

gst-launch
gst-launch is a simple script-like commandline application that can be used to test
pipelines. For example, the command gst-launch audiotestsrc ! audioconvert !
audio/x-raw-int,channels=2 ! alsasink will run a pipeline which generates a
sine-wave audio stream and plays it to your ALSA audio card. gst-launch also
allows the use of threads (will be used automatically as required or as queue
elements are inserted in the pipeline) and bins (using brackets, so “(” and “)”).
You can use dots to imply padnames on elements, or even omit the padname
to automatically select a pad. Using all this, the pipeline gst-launch filesrc
location=file.ogg ! oggdemux name=d d. ! queue ! theoradec ! ffmpegcolorspace !
xvimagesink d. ! queue ! vorbisdec ! audioconvert ! audioresample ! alsasink will
play an Ogg file containing a Theora video-stream and a Vorbis audio-stream. You
can also use autopluggers such as decodebin on the commandline. See the manual
page of gst-launch for more information.

gst-inspect
gst-inspect can be used to inspect all properties, signals, dynamic parameters and
the object hierarchy of an element. This can be very useful to see which GObject
properties or which signals (and using what arguments) an element supports. Run
gst-inspect fakesrc to get an idea of what it does. See the manual page of gst-inspect
for more information.

GstEditor
GstEditor is a set of widgets to display a graphical representation of a pipeline.

Notes
1. http://bugzilla.gnome.org

76

Chapter 22. Porting 0.8 applications to 0.10

This section of the appendix will discuss shortly what changes to applications will
be needed to quickly and conveniently port most applications from GStreamer-0.8
to GStreamer-0.10, with references to the relevant sections in this Application De-
velopment Manual where needed. With this list, it should be possible to port simple
applications to GStreamer-0.10 in less than a day.

List of changes

• Most functions returning an object or an object property have been changed
to return its own reference rather than a constant reference of the one owned
by the object itself. The reason for this change is primarily thread safety. This
means, effectively, that return values of functions such as gst_element_get_pad
(), gst_pad_get_name () and many more like these have to be free’ed or
unreferenced after use. Check the API references of each function to know for
sure whether return values should be free’ed or not. It is important that all
objects derived from GstObject are ref’ed/unref’ed using gst_object_ref() and
gst_object_unref() respectively (instead of g_object_ref/unref).

• Applications should no longer use signal handlers to be notified of errors, end-
of-stream and other similar pipeline events. Instead, they should use the GstBus,
which has been discussed in Chapter 7. The bus will take care that the messages
will be delivered in the context of a main loop, which is almost certainly the ap-
plication’s main thread. The big advantage of this is that applications no longer
need to be thread-aware; they don’t need to use g_idle_add () in the signal han-
dler and do the actual real work in the idle-callback. GStreamer now does all that
internally.

• Related to this, gst_bin_iterate () has been removed. Pipelines will iterate in
their own thread, and applications can simply run a GMainLoop (or call the main-
loop of their UI toolkit, such as gtk_main ()).

• State changes can be delayed (ASYNC). Due to the new fully threaded nature
of GStreamer-0.10, state changes are not always immediate, in particular
changes including the transition from READY to PAUSED state. This means
two things in the context of porting applications: first of all, it is no longer
always possible to do gst_element_set_state () and check for a return value
of GST_STATE_CHANGE_SUCCESS, as the state change might be delayed
(ASYNC) and the result will not be known until later. You should still check
for GST_STATE_CHANGE_FAILURE right away, it is just no longer possible
to assume that everything that is not SUCCESS means failure. Secondly, state
changes might not be immediate, so your code needs to take that into account.
You can wait for a state change to complete if you use GST_CLOCK_TIME_NONE
as timeout interval with gst_element_get_state ().

• In 0.8, events and queries had to manually be sent to sinks in pipelines (unless
you were using playbin). This is no longer the case in 0.10. In 0.10, queries and
events can be sent to toplevel pipelines, and the pipeline will do the dispatching
internally for you. This means less bookkeeping in your application. For a short
code example, see Chapter 11. Related, seeking is now threadsafe, and your video
output will show the new video position’s frame while seeking, providing a better
user experience.

• The GstThread object has been removed. Applications can now simply put ele-
ments in a pipeline with optionally some “queue” elements in between for buffer-
ing, and GStreamerwill take care of creating threads internally. It is still possible to
have parts of a pipeline run in different threads than others, by using the “queue”
element. See Chapter 16 for details.

77

Chapter 22. Porting 0.8 applications to 0.10

• Filtered caps -> capsfilter element (the pipeline syntax for gst-launch has not
changed though).

• libgstgconf-0.10.la does not exist. Use the “gconfvideosink” and “gconfaudiosink”
elements instead, which will do live-updates and require no library linking.

• The “new-pad” and “state-change” signals on GstElementwere renamed to “pad-
added” and “state-changed”.

• gst_init_get_popt_table () has been removed in favour of the
new GOption command line option API that was added to GLib 2.6.
gst_init_get_option_group () is the new GOption-based equivalent to
gst_init_get_ptop_table ().

78

Chapter 23. Integration

GStreamer tries to integrate closely with operating systems (such as Linux and
UNIX-like operating systems, OS X or Windows) and desktop environments (such
as GNOME or KDE). In this chapter, we’ll mention some specific techniques to
integrate your application with your operating system or desktop environment of
choice.

Linux and UNIX-like operating systems
GStreamer provides a basic set of elements that are useful when integrating with
Linux or a UNIX-like operating system.

• For audio input and output, GStreamer provides input and output elements for
several audio subsystems. Amongst others, GStreamer includes elements for
ALSA (alsasrc, alsamixer, alsasink), OSS (osssrc, ossmixer, osssink) and Sun audio
(sunaudiosrc, sunaudiomixer, sunaudiosink).

• For video input, GStreamer contains source elements for Video4linux (v4lsrc,
v4lmjpegsrc, v4lelement and v4lmjpegisnk) and Video4linux2 (v4l2src,
v4l2element).

• For video output, GStreamer provides elements for output to X-windows
(ximagesink), Xv-windows (xvimagesink; for hardware-accelerated video),
direct-framebuffer (dfbimagesink) and openGL image contexts (glsink).

GNOME desktop
GStreamer has been the media backend of the GNOME1 desktop since GNOME-2.2
onwards. Nowadays, a whole bunch of GNOME applicationsmake use of GStreamer
for media-processing, including (but not limited to) Rhythmbox2, Totem3 and Sound
Juicer4.

Most of these GNOME applicationsmake use of some specific techniques to integrate
as closely as possible with the GNOME desktop:

• GNOME applications call gnome_program_init () to parse command-line
options and initialize the necessary gnome modules. GStreamer applications
would normally call gst_init () to do the same for GStreamer. This would
mean that only one of the two can parse command-line options. To work around
this issue, GStreamer can provide a GLib GOptionGroup which can be passed to
gnome_program_init (). The following example requires Gnome-2.14 or newer
(previous libgnome versions do not support command line parsing via GOption
yet but use the now deprecated popt)

#include <gnome.h>
#include <gst/gst.h>

static gchar **cmd_filenames = NULL;

static GOptionEntries cmd_options[] = {
/* here you can add command line options for your application. Check
* the GOption section in the GLib API reference for a more elaborate
* example of how to add your own command line options here */

/* at the end we have a special option that collects all remaining
* command line arguments (like filenames) for us. If you don’t
* need this, you can safely remove it */

{ G_OPTION_REMAINING, 0, 0, G_OPTION_ARG_FILENAME_ARRAY, &cmd_filenames,
"Special option that collects any remaining arguments for us" },

79

Chapter 23. Integration

/* mark the end of the options array with a NULL option */
{ NULL, }

};

/* this should usually be defined in your config.h */
#define VERSION "0.0.1"

gint
main (gint argc, gchar **argv)
{
GOptionContext *context;
GOptionGroup *gstreamer_group;
GnomeProgram *program;

/* we must initialise the threading system before using any
* other GLib funtion, such as g_option_context_new() */

if (!g_thread_supported ())
g_thread_init (NULL);

context = g_option_context_new ("gnome-demo-app");

/* get command line options from GStreamer and add them to the group */
gstreamer_group = gst_init_get_option_group ();
g_option_context_add_group (context, gstreamer_group);

/* add our own options. If you are using gettext for translation of your
* strings, use GETTEXT_PACKAGE here instead of NULL */

g_option_context_add_main_entries (context, cmd_options, NULL);

program = gnome_program_init ("gnome-demo-app", VERSION
LIBGNOMEUI_MODULE, argc, argv,
GNOME_PARAM_HUMAN_READABLE_NAME, "Gnome Demo",
GNOME_PARAM_GOPTION_CONTEXT, context,
NULL);

/* any filenames we got passed on the command line? parse them! */
if (cmd_filenames != NULL) {

guint i, num;

num = g_strv_length (cmd_filenames);
for (i = 0; i < num; ++i) {

/* do something with the filename ... */
g_print ("Adding to play queue: %s\n", cmd_filenames[i]);

}

g_strfreev (cmd_filenames);
cmd_filenames = NULL;

}

[..]

}

• GNOME stores the default video and audio sources and sinks in GConf.
GStreamer provides a number of elements that create audio and video
sources and sinks directly based on those GConf settings. Those elements are:
gconfaudiosink, gconfvideosink, gconfaudiosrc and gconfvideosrc. You can create
them with gst_element_factory_make () and use them directly just like you
would use any other source or sink element. All GNOME applications are
recommended to use those elements.

• GStreamer provides data input/output elements for use with the GNOME-VFS
system. These elements are called “gnomevfssrc” and “gnomevfssink”.

80

Chapter 23. Integration

KDE desktop
GStreamer has been proposed for inclusion in KDE-4.0. Currently, GStreamer is in-
cluded as an optional component, and it’s used by several KDE applications, includ-
ing AmaroK5, JuK6, KMPlayer7 and Kaffeine8.

Although not yet as complete as the GNOME integration bits, there are already some
KDE integration specifics available. This list will probably grow as GStreamer starts
to be used in KDE-4.0:

• AmaroK contains a kiosrc element, which is a source element that integrates with
the KDE VFS subsystem KIO.

OS X
GStreamer provides native video and audio output elements for OS X. It builds using
the standard development tools for OS X.

Windows

Warning
Note: this section is out of date. GStreamer-0.10 has much better sup-
port for win32 than previous versions though and should usually com-
pile and work out-of-the-box both using MSYS/MinGW or Microsoft
compilers. The GStreamer web site9 and the mailing list archives10 are
a good place to check the latest win32-related news.

GStreamer builds using Microsoft Visual C .NET 2003 and using Cygwin.

Building GStreamer under Win32
There are different makefiles that can be used to build GStreamer with the usual
Microsoft compiling tools.

The Makefile is meant to be used with the GNU make program and the free version
of theMicrosoft compiler (http://msdn.microsoft.com/visualc/vctoolkit2003/). You
also have to modify your system environment variables to use it from the command-
line. You will also need a working Platform SDK for Windows that is available for
free fromMicrosoft.

The projects/makefiles will generate automatically some source files needed to com-
pile GStreamer. That requires that you have installed on your system some GNU
tools and that they are available in your system PATH.

The GStreamer project depends on other libraries, namely :

• GLib

• libxml2

• libintl

• libiconv

Work is being done to provide pre-compiled GStreamer-0.10 libraries as a packages
for win32. Check the GStreamer web site12 and check our mailing list 13 for the latest
developments in this respect.

Notes: GNU tools needed that you can find on http://gnuwin32.sourceforge.net/

81

Chapter 23. Integration

• GNU flex (tested with 2.5.4)

• GNU bison (tested with 1.35)

and http://www.mingw.org/

• GNU make (tested with 3.80)

the generated files from the -auto makefiles will be available soon separately on the net
for convenience (people who don’t want to install GNU tools).

Installation on the system
FIXME: This section needs be updated for GStreamer-0.10.

Notes
1. http://www.gnome.org/

2. http://www.rhythmbox.org/

3. http://www.hadess.net/totem.php3

4. http://www.burtonini.com/blog/computers/sound-juicer

5. http://amarok.kde.org/

6. http://developer.kde.org/~wheeler/juk.html

7. http://www.xs4all.nl/~jjvrieze/kmplayer.html

8. http://kaffeine.sourceforge.net/

9. http://gstreamer.freedesktop.org

10. http://news.gmane.org/gmane.comp.video.gstreamer.devel

11. http://msdn.microsoft.com/visualc/vctoolkit2003/

12. http://gstreamer.freedesktop.org

13. http://news.gmane.org/gmane.comp.video.gstreamer.devel

14. http://gnuwin32.sourceforge.net/

15. http://www.mingw.org/

82

Chapter 24. Licensing advisory

How to license the applications you build with GStreamer

The licensing of GStreamer is no different from a lot of other libraries out there like
GTK+ or glibc: we use the LGPL.What complicates things with regards to GStreamer
is its plugin-based design and the heavily patented and proprietary nature of many
multimedia codecs. While patents on software are currently only allowed in a small
minority of world countries (the US andAustralia being themost important of those),
the problem is that due to the central place the US hold in the world economy and
the computing industry, software patents are hard to ignore wherever you are. Due
to this situation, many companies, including major GNU/Linux distributions, get
trapped in a situation where they either get bad reviews due to lacking out-of-the-
box media playback capabilities (and attempts to educate the reviewers have met
with little success so far), or go against their own - and the free softwaremovement’s -
wish to avoid proprietary software. Due to competitive pressure, most choose to add
some support. Doing that through pure free software solutions would have them risk
heavy litigation and punishment from patent owners. So when the decision is made
to include support for patented codecs, it leaves them the choice of either using spe-
cial proprietary applications, or try to integrate the support for these codecs through
proprietary plugins into themultimedia infrastructure provided byGStreamer. Faced
with one of these two evils the GStreamer community of course prefer the second op-
tion.

The problem which arises is that most free software and open source applications
developed use the GPL as their license. While this is generally a good thing, it creates
a dilemma for people who want to put together a distribution. The dilemma they face
is that if they include proprietary plugins in GStreamer to support patented formats
in a way that is legal for them, they do risk running afoul of the GPL license of the
applications. We have gotten some conflicting reports from lawyers on whether this
is actually a problem, but the official stance of the FSF is that it is a problem. We view
the FSF as an authority on this matter, so we are inclined to follow their interpretation
of the GPL license.

So what does this mean for you as an application developer? Well, it means you
have to make an active decision on whether you want your application to be used
together with proprietary plugins or not. What you decide here will also influence
the chances of commercial distributions andUnix vendors shipping your application.
The GStreamer community suggest you license your software using a license that
will allow proprietary plugins to be bundled with GStreamer and your applications,
in order to make sure that as many vendors as possible go with GStreamer instead of
less free solutions. This in turn we hope and think will let GStreamer be a vehicle for
wider use of free formats like the Xiph.org formats.

If you do decide that you want to allow for non-free plugins to be used with your
application you have a variety of choices. One of the simplest is using licenses like
LGPL, MPL or BSD for your application instead of the GPL. Or you can add an ex-
ception clause to your GPL license stating that you except GStreamer plugins from
the obligations of the GPL.

A good example of such a GPL exception clause would be, using the Totem video
player project as an example: The authors of the Totem video player project hereby
grants permission for non-GPL-compatible GStreamer plugins to be used and dis-
tributed together with GStreamer and Totem. This permission goes above and be-
yond the permissions granted by the GPL license Totem is covered by.

Our suggestion among these choices is to use the LGPL license, as it is what resembles
the GPLmost and it makes it a good licensing fit with the major GNU/Linux desktop
projects like GNOME and KDE. It also allows you to share code more openly with
projects that have compatible licenses. Obviously, pure GPL code without the above-

83

Chapter 24. Licensing advisory

mentioned clause is not usable in your application as such. By choosing the LGPL,
there is no need for an exception clause and thus code can be shared more freely.

I have above outlined the practical reasons for why the GStreamer community sug-
gests you allow non-free plugins to be used with your applications. We feel that in
the multimedia arena, the free software community is still not strong enough to set
the agenda and that blocking non-free plugins to be used in our infrastructure hurts
us more than it hurts the patent owners and their ilk.

This view is not shared by everyone. The Free Software Foundation urges you to use
an unmodified GPL for your applications, so as to push back against the temptation
to use non-free plug-ins. They say that since not everyone else has the strength to
reject them because they are unethical, they ask your help to give them a legal reason
to do so.

This advisory is part of a bigger advisory with a FAQ which you can find on the
GStreamer website1

Notes
1. http://gstreamer.freedesktop.org/documentation/licensing.html

84

Chapter 25. Quotes from the Developers

As well as being a cool piece of software, GStreamer is a lively project, with devel-
opers from around the globe very actively contributing. We often hang out on the
#gstreamer IRC channel on irc.freenode.net: the following are a selection of amusing1

quotes from our conversations.

6 Mar 2006

When I opened my eyes I was in a court room. There were masters McIlroy
and Thompson sitting in the jury and master Kernighan too. There were the
GStreamer developers standing in the defendant’s place, accused of violating
several laws of Unix philosophy and customer lock-down via running on a pro-
prietary pipeline, different from that of the Unix systems. I heard Eric Raymond
whispering "got to add this case to my book.

behdad’s blog

22 May 2007

<__tim>Uraeus: amusing, isn’t it?

<Uraeus> __tim: I wrote that :)

<__tim> Uraeus: of course you did; your refusal to surrender to the oppressive
regime of the third-person-singular-rule is so unique in its persistence that it’s
hard to miss :)

12 Sep 2005

<wingo>we just need to get rid of that mmap stuff

<wingo> i think gnomevfssrc is faster for files even

<BBB>wingo, no

<BBB> and no

<wingo> good points ronald

23 Jun 2005

* wingo back

* thomasvs back

--- You are now known as everybody

* everybody back back

<everybody> now break it down

--- You are now known as thomasvs

* bilboed back

--- bilboed is now known as john-sebastian

* john-sebastian bach

--- john-sebastian is now known as bilboed

--- You are now known as scratch_my

* scratch_my back

--- bilboed is now known as Illbe

--- You are now known as thomasvs

* Illbe back

--- Illbe is now known as bilboed

85

Chapter 25. Quotes from the Developers

20 Apr 2005

thomas: jrb, somehow his screenshotsrc grabs whatever X is showing and makes
it available as a stream of frames

jrb: thomas: so, is the point that the screenshooter takes a video? but won’t the
dialog be in the video? oh, nevermind. I’ll just send mail...

thomas: jrb, well, it would shoot first and ask questions later

2 Nov 2004

zaheerm: wtay: unfair u fixed the bug i was using as a feature!

14 Oct 2004

* zaheermwonders how he can break gstreamer today :)

ensonic: zaheerm, spider is always a good starting point

14 Jun 2004

teuf : ok, things work much better when I don’t write incredibly stupid and
buggy code

thaytan: I find that too

23 Nov 2003

Uraeus: ah yes, the sleeping part, mymind is not multitasking so I was still think-
ing about exercise

dolphy: Uraeus: your mind is multitasking

dolphy: Uraeus: you just miss low latency patches

14 Sep 2002

--- wingo-party is now known as wingo

* wingo holds head

4 Jun 2001

taaz: you witchdoctors and your voodoo mpeg2 black magic...

omega_: um. I count three, no four different cults there <g>

ajmitch: hehe

omega_:witchdoctors, voodoo, black magic,

omega_: and mpeg

16 Feb 2001

wtay: I shipped a few commerical products to >40000 people now but GStreamer
is way more exciting...

16 Feb 2001

* tool-man is a gstreamer groupie

14 Jan 2001

Omega: did you run ldconfig? maybe it talks to init?

wtay: not sure, don’t think so... I did run gstreamer-register though :-)

Omega: ah, that did it then ;-)

wtay: right

86

Chapter 25. Quotes from the Developers

Omega: probably not, but in case GStreamer starts turning into an OS, someone
please let me know?

9 Jan 2001

wtay:me tar, you rpm?

wtay: hehe, forgot "zan"

Omega: ?

wtay:me tar"zan", you ...

7 Jan 2001

Omega: that means probably building an agreggating, cache-massaging queue to
shove N buffers across all at once, forcing cache transfer.

wtay: never done that before...

Omega: nope, but it’s easy to do in gstreamer <g>

wtay: sure, I need to rewrite cp with gstreamer too, someday :-)

7 Jan 2001

wtay: GStreamer; always at least one developer is awake...

5/6 Jan 2001

wtay:we need to cut down the time to create an mp3 player down to seconds...

richardb: :)

Omega: I’m wanting to something more interesting soon, I did the "draw an mp3
player in 15sec" back in October ’99.

wtay: by the time Omega gets his hands on the editor, you’ll see a complete audio
mixer in the editor :-)

richardb:Well, it clearly has the potential...

Omega:Working on it... ;-)

28 Dec 2000

MPAA:We will sue you now, you have violated our IP rights!

wtay: hehehe

MPAA:How dare you laugh at us? We have lawyers! We have Congressmen! We
have LARS!

wtay: I’m so sorry your honor

MPAA:Hrumph.

* wtay bows before thy

Notes
1. No guarantee of sense of humour compatibility is given.

87

Chapter 25. Quotes from the Developers

88

	GStreamer Application Development Manual (0.10.23.1)
	Table of Contents
	Foreword
	Introduction
	Who should read this manual?
	Preliminary reading
	Structure of this manual

	Chapter 1. What is GStreamer?
	Chapter 2. Design principles
	Clean and powerful
	Object oriented
	Extensible
	Allow binaryonly plugins
	High performance
	Clean core/plugins separation
	Provide a framework for codec experimentation

	Chapter 3. Foundations
	Elements
	Pads
	Bins and pipelines

	Chapter 4. Initializing GStreamer
	Simple initialization
	The GOption interface

	Chapter 5. Elements
	What are elements?
	Source elements
	Filters, convertors, demuxers, muxers and codecs
	Sink elements

	Creating a GstElement
	Using an element as a GObject
	More about element factories
	Getting information about an element using a factory
	Finding out what pads an element can contain

	Linking elements
	Element States

	Chapter 6. Bins
	What are bins
	Creating a bin
	Custom bins

	Chapter 7. Bus
	How to use a bus
	Message types

	Chapter 8. Pads and capabilities
	Pads
	Dynamic (or sometimes) pads
	Request pads

	Capabilities of a pad
	Dissecting capabilities
	Properties and values

	What capabilities are used for
	Using capabilities for metadata
	Creating capabilities for filtering

	Ghost pads

	Chapter 9. Buffers and Events
	Buffers
	Events

	Chapter 10. Your first application
	Hello world
	Compiling and Running helloworld.c
	Conclusion

	Chapter 11. Position tracking and seeking
	Querying: getting the position or length of a stream
	Events: seeking (and more)

	Chapter 12. Metadata
	Metadata reading
	Tag writing

	Chapter 13. Interfaces
	The URI interface
	The Mixer interface
	The Tuner interface
	The Color Balance interface
	The Property Probe interface
	The X Overlay interface

	Chapter 14. Clocks in GStreamer
	Clock providers
	Clock slaves

	Chapter 15. Dynamic Controllable Parameters
	Getting Started
	Setting up parameter control

	Chapter 16. Threads
	When would you want to force a thread?
	Scheduling in GStreamer

	Chapter 17. Autoplugging
	MIMEtypes as a way to identity streams
	Media stream type detection
	Plugging together dynamic pipelines

	Chapter 18. Pipeline manipulation
	Data probing
	Manually adding or removing data from/to a pipeline
	Inserting or grabbing data
	Forcing a format
	Example application

	Embedding static elements in your application

	Chapter 19. Components
	Playbin
	Decodebin

	Chapter 20. XML in GStreamer
	Turning GstElements into XML
	Loading a GstElement from an XML file
	Adding custom XML tags into the core XML data

	Chapter 21. Things to check when writing an application
	Good programming habits
	Debugging
	Conversion plugins
	Utility applications provided with GStreamer
	gstlaunch
	gstinspect
	GstEditor

	Chapter 22. Porting 0.8 applications to 0.10
	List of changes

	Chapter 23. Integration
	Linux and UNIXlike operating systems
	GNOME desktop
	KDE desktop
	OS X
	Windows
	Building GStreamer under Win32
	Installation on the system

	Chapter 24. Licensing advisory
	How to license the applications you build with GStreamer

	Chapter 25. Quotes from the Developers

