The Python
Imaging Library

Secret Labs AB

The Python
Imaging Library

By Fredrik Lundh

The Python Imaging Library
by Fredrik Lundh

Copyright © 1995-2001 by Secret Labs AB. All rights reserved.

Secret Labs AB and the author assumes no responsibility for errors or omissions, or for damages
resulting from the use of the information contained herein.

Updated for Python Imaging Library 1.1, April 2001

Table of Contents

o (=3 = o7 =S PP i
10 o oo 8o o] o PP i
IMAGE AFCNIVES ... e i
IMAGE DISPIAY e ettt i
IMAGE PrOCESSING. . ettt ettt ettt et ettt e eaaeas i

I a1 oo 18 Tox [T I | PP 1
IV €0 T | PP 1
UsSiNg the IMage Classo e as 1
Reading and Writing IMagescooiiiiii i eas 1
Cutting, Pasting and Merging IMages.cu.uueeiii i eeeeen 3
Geometrical TransformMS e e 4

(001 (o] gl I = 14 151 0] 141 S 4
Image ENNanCement e 5

] =] PP 5

POINT OPErationsot aaaee 5
ENNANCEmMENT ... 6

[gETo T =T o [1] o [o <L 6
POSESCHIPT Printing .. e aas 7
More 0N Reading IMageso e e aaas 7
Controlling the DeCOUEreuiii e 8

(070] T =T o) £ 9
BaANGS . - 9
0T [P 9

] 74 9
COoOrdiNAte SYSTEM . . .ttt ettt e an e 9

o= 1= 1 P 10

] 0P 10

[I. MOAUIE REFEIENCE ... et 11
The Image MOAUIEttt eas 11
EXAMIPIES s 11

LT T] g S P 11
T2 11

(0] o= o 11

BIENd ..o 11
(o011 o0 L] 1 (= 12

o | P 12
(0] 00157 1 [T 12

0TS 0T 12

1= g T o P 12
(001 12

(070 0 13

(03 0] o 1 13

Aralt s 13

L L= PP 13
(0] 00157 1 [T 13

GETDANAS . . . e 13

(011 0] oo > G 13

(01 o F= 1 - 14
8 [ST (=) I (=] 0T 14
(01101 D= 14
1151 0 =0 14
0= Vo 14
0] i 15T 14
7] 1 14
10 0 15
PULAIPNE .. .o 15
101 o - - L 15
PULPAIETEE .. e 15
PULPIXEL . .« e e 16
[T 74 16
0] 21 1 16
KT 1 16
TS 16
] 101 16
3 0 17
0] | 17
thumbnail. e 17
(0] o1 1 4= o S 17
(0 1T T 17
AN O L s 17
transTOrmM(EXTENT) e e as 17
transfOrmM(AFFINE) e e as 18
transformM(QUAD) ...t aas 18
transfOrM(MESH) ... e 18
L2101 101 18
VBT L e 18
ATEFIDUTES ... e 18
0] 2 =1 S 18
0700 L= 19
K 4 = 19
2 11 = 19
0o 19
The ImageChops MOAUIE. e e 20
U] o4 1 o] 1 20
(0 0] 153 =1 | A 20
(0 U o] 0% (= 20
10177 20
o]) (= 20
arKer o e 20
AITFEIENCE .. e 20
MU DY . . e 21
KT0] (=TT o [21
T (o 21
1] 0 i = T 21
BlENd . 21
(o011 o011 (= 21
0] i 15T 21

The ImageCrackCode Module (PIL PIUS) ... 22

LT T] g S P 22
(07 = To3 (oL [N (o] F= 1S3 22
Methods and attribULES ... e e 22
ST T 22

0] 06) G P 22

(o= 1 1T o= 22
(o1=] 01 1 {0 o [P 22
<[22
BN e 22

(0] 1 1= P 22
1 | P 22

L0 o 22

P s 23
(0] 0= 1 1 o 23
GOTMASK . .. ettt 23
GETOULIING ..ot 23

The ImageDraw ModUle.o e 24
EXAMPIE Lot 24
LT T] P 24
D] = VYA (o] 0151 1 (0 Tox (o] o) I 24
1= g T o P 24
5 24
o1 W3 T o L 24

(o] 1] o P 24
Bl DS e e 25
= PP 25

0] =] o 25
10 0 25
[10] 1Y/ o] o 25
FECTANGIE ..o e 25

1S 26
()] 4 S PP 26
ComMPatiDIliTY ..o e 26
ImageDraw (CONSTIUCTON) ... eaeee e 26
1] 1]] PP 26
1= 1 1 | PP 26
1= 1 0] 0| A PP 26

The ImageEnhance Module ... e 27
EXAMPIE o s 27
1] =] o = Lo P 27
<] 0] =T o P 27

I3 0] o] g0 > T PP 27
(60] (o] gl (0] 453 1 10T (0] o) R 27

The Brightness Class. e 27
Brightness (CONSTIUCTON)ueiii e 27

The COoNtrast Class.coiue et e e e eneas 28
CoNtrast (CONSTIUCTON). ...ttt aees 28

The Sharpness Class e 28
Sharpness (CONSTIUCTON) et e as 28

The ImageFile Module ... e 29

EXAMPIE o s 29

LT T] g S P 29
Parser (CONSTIUCTON)u et 29

1= 3 T o P 29

LL=L=T o PP 29

(o] [0 1] P 29

The ImageFilelO ModUIe........o e 30
LT T] g P 30
ImageFilelO (FAaCtOry)o i 30

The ImageFilter MOUIE oo e 31
EXAMPIE et 31

] =] P 31

The ImageFont Module e 32
LT T] g P 32

1080 (FACTOIY) . e e 32

load_path (FAaCLOrY) ... e 32

1= g T o P 32

(01 K 4= 32

GOTMASKttt 32

The ImagePath Module ... e 33
LT T] g P 33

Path (FaCTOrY) . ..o e 33

The ImageSequence Module ... e 34
LT T] g P 34
[terator (CONSTIUCTON) ... e eaeee e 34

1= g T o P 34

The [] OPErator. e e s 34

The ImageStat MOdUIE ... e eas 35
LT T] g S P 35

R3] 2 L (] =TS 35
ATENTDUTES ..o e e 35
L) (=] 1 = 35

070 U 35

T 0 35

T 07 35

L TST 1 35

LR aT=T0 [>T I P 35
00 35

VA et ettt et 35

(0 [0 [PP 36

The ImageTK MOAUIEt eas 37
The BitmapIimage Class e 37
Bitmaplimage (CONSTIUCTON) ... e 37

The Photolmage Class.o e 37
Photolmage (CONSTIUCTON) e 37

72] 1 37

The ImageWin MOAUIE ...t e s 38
THE DI CIASS .. eeeie ettt e e 38

D]] oI (0] 4151 £ 18T} o]) 38

1= g T o P 38
123010 L] 38

7= 1L 1 = 38

7] 1 38

The PSDraw MOGUIEt ettt e nerneas 39
LT T] g S P 39
PSDraw (CONSTIUCTON) - ... u ettt et ettt et e e e 39

PSDraw Methods. e e 39
begin_doCUMENTt. 39

L= o o 0T U T 1 =T o 39

BN 39

FECEANGIE ..o e 39

S 39

1= 1 0] 0| AP 39

1] 1]] PP 39

1= 1 1 | PP 40

LTI 0o] ES R A=Y {5 = o7 = 41
The pildriver Uty ... e e e eas 41
The PIlconVert ULtyot eas 42
The pilfile Uity e e eeas 43
The P oNT Uty . ..o e eas 44
The PPNt ULy ..o e e e aaas 45
LYY o o 1T g o [o = 46
AL SOTEWANE LICENSE ..ttt e et ettt e e 46
=T CT= o B0 o] oo o S 47
C. Image File FOMMALSt et eaaas 48
FOrmat DESCIIPLIONSttt et eeaas 48

BV P s 48

CUR (read Only). ..o e 48

DCX (read Only) ... e 48

EPS (WITE-0NlY) <.t 48

FLI, FLC (read Only) ..o e 48

FPX (read ONlY) .o e 48

GBR (rad ONlY) ..t 49

GD (read Only) ... e 49

G e s 49

ICO (read ONlY) ... e 49
PP 49

IMT (re@d ONIY) e e 49

JPE G et 49

MIC (read ONlY) .. e 50

MCIDAS (read only). . ..o e 50

MPEG (identify only) ... 50
] P 50

PCD (read Only) ... 50

P X et 50

PDF (Wt ONIY) « e 50

PN G s 51

PP M L s 51

PSD (read ONlY) . e 51

SGI (read ONIY) ... s 51

SUN (read ONlY) e e as 51

TGA (read ONlY). ...t 51

KB e e e 51

XPM (read Only) s 52

File EXTENSIONS. . et e 52

D. Writing Your Own File DeCOAEr. e 53
EXAMPIE s 53

The Tile ATtribute e 54

The RAW DECOUEYt aaees 54
Decoding Floating POINT Data.........oeeiiiiiiii i 55

The Bit DECOURY ... e e eees 56

Vi

Preface

This document describes the Python Imaging Library, version 1.1, including some PIL
Plus extensions. It was last updated April 30, 2001.

Introduction

The Python Imaging Library adds image processing capabilities to your Python
interpreter.

This library provides extensive file format support, an efficient internal representation,
and powerful image processing capabilities.

The core image library is designed for fast access to data stored in a few, basic pixel
formats. It should be well suited as a base for a general image processing tool.

Let's look at a few possible uses for this library:

Image Archives

The Python Imaging Library is well suited for image archival and batch processing
applications. You can use the library to create thumbnails, convert between file formats,
print images, etc.

The current version identifies and reads a large number of formats. Write support is
intentionally restricted to the most commonly used interchange and presentation
formats.

Image Display
The current release includes Tk Phot ol mage and Bi t mapl mage interfaces, as well as a
Windows DI B interface that can be used with PythonWin.

For debugging, there's also a show method in the Unix version which calls xv to display
the image.

Image Processing

The library contains some basic image processing functionality, including point
operations, filtering with a set of built-in convolution kernels, and colour space
conversions.

The library also supports image resizing, rotation and arbitrary affine transforms.

There's a histogram method allowing you to pull some statistics out of an image. This can
be used for automatic contrast enhancement, and for global statistical analysis.

Tutorial

Using the Image Class

The most important class in the Python Imaging Library is the | mage class, defined in the
module with the same name. You can create instances of this class in several ways;
either by loading images from files, processing other images, or creating images from
scratch.

To load an image from a file, use the open function in the | rage module.

>>> jnport | mage
>>> im = | mage. open("| ena. ppnt')

If successful, this function returns an | mage object. You can now use instance attributes
to see what the file really contained.

>>> print imformat, imsize, imnode
PPM (512, 512) RGB

The f or mat attribute identifies the source of an image. If the image was not read from a
file, it is set to None. The si ze attribute is a 2-tuple containing width and height (in
pixels). The node attribute defines the number and names of the bands in the image,
and also the pixel type and depth. Common modes are “L” (for luminance) for greyscale
images, “RGB” for true colour images, and “CMYK” for pre-press images.

If the file cannot be opened, an | CError exception is raised.

Once you have an instance of the | nage class, you can use the methods defined by this
class to process and manipulate the image. For example, let's display the image we just
loaded:

>>> im show()

(The standard version of show is not very efficient, since it saves the image to a
temporary file and calls the xv utility to display the image. If you don't have xv installed,
it won't even work. When it does work, it is very handy for debugging and tests, though.)

The following sections provide an overview of the different functions provided in this
library.

Reading and Writing Images

The Python Imaging Library supports a wide variety of image file formats. To read files
from disk, you use the open function in the | mage module. You don't have to know the
file format to open a file. The library automatically determines the format based on the
contents of the file.

To save a file, use the save method in the | nage class. When saving files, the name
becomes important. Unless you specify the format, the library use the filename
extension to figure out which file format to use when storing the file.

rutorial

Example 1. Convert files to JPEG

import os, sys
i nport | mage

for infile in sys.argv[1:]:
outfile = os.path.splitext(infile)[0] + ".]pg"
if infile != outfile:
try:
I mage. open(infile).save(outfile)
except |1 CError:
print "cannot convert", infile

You can use a second argument to the save method in order to explicitly specify a file

format. If you use a non-standard extension, you must always specify the format this
way:

Example 2. Create JPEG Thumbnails

import os, sys
i nport | mage

for infile in sys.argv[1:]:
outfile = os.path.splitext(infile)[0] + ".thunbnail"
if infile != outfile:
try:
im= | mage. open(infile)
imthunbnail ((128, 128))
i msave(outfile, "JPEG")
except |1 CError:
print "cannot create thunbnail for", infile

An important detail is that the library doesn't decode or load the raster data unless it
really has to. When you open a file, the file header is read to determine the file format
and extract things like mode, size, and other properties required to decode the file, but
the rest of the file is not processed until later.

This also means that opening an image file is a fast operation, independent of the file
size and compression type. Here's a simple script to quickly identify a set of image files:

Example 3. Identify Image Files

i mport sys
i nport | mage

for infile in sys.argv[1:]:
try:
im= I mage. open(infile)
print infile, imformat, "%x%l" % i msize, imnode
except |1 CError:
pass

rutorial

Cutting, Pasting and Merging Images

The | mage class contains methods allowing you to manipulate regions within an image.
To extract a sub-rectangle from an image, use the cr op method.

Example 4. Copying a subrectangle from an image

box = (100, 100, 400, 400)
regi on = imcrop(box)

The region is defined by a 4-tuple, where coordinates are (left, upper, right, lower). The
Python Imaging Library uses a coordinate system with (0, 0) in the upper left corner. Also
note that coordinates refer to positions between the pixels, so the region in the above
example is 300x300 pixels and nothing else.

You can now process the region in some fashion, and possibly paste it back.

Example 5. Processing a subrectangle, and pasting it back

regi on = region.transpose(l mage. ROTATE 180)
i m past e(region, box)

When pasting regions back, the size of the region must match the given region exactly.
In addition, the region cannot extend outside the image. However, the modes of the
original image and the region do not need to match. If they don't, the region is
automatically converted before being pasted (see the section on Colour Transforms
below for details).

Here's an additional example:

Example 6. "Rolling" an image

def roll(inmage, delta):
"Rol | an inmage sideways"

Xsi ze, ysize = inmage.size

delta = delta % xsi ze
if delta == 0: return inmage

partl = image.crop((0, 0, delta, ysize))

part2 = image.crop((delta, O, xsize, ysize))

i mage. paste(part2, (0, 0, xsize-delta, ysize))

i mge. paste(partl, (xsize-delta, 0, xsize, ysize))

return i mage

For more advanced tricks, the paste method can also take a transparency mask as an
optional argument. In this mask, the value 255 indicates that the pasted image is opaque
in that position (that is, the pasted image should be used as is). The value 0 means that
the pasted image is completely transparent. Values in between indicate different levels
of transparency.

The Python Imaging Library also allows you to work with the individual bands of an multi-
band image, such as an RGB image. The split method creates a set of new images, each

rutorial

containing one band from the original multi-band image. The merge function takes a
mode and a tuple of images, and combines them into a new image. The following sample
swaps the three bands of an RGB image:

Example 7. Splitting and merging bands

r, go b=imsplit()
im= Image. merge("R&", (b, g, r))

Geometrical Transforms

The | mage class contains methods to r esi ze and r ot at e an image. The former takes a
tuple giving the new size, the latter the angle in degrees counter-clockwise.

Example 8. Simple geometry transforms

imresize((128, 128))
imrotate(45) # degrees counter-clockw se

out
out

To rotate the image in full 90 degree steps, you can either use the r ot at e method or the
t ranspose method. The latter can also be used to flip an image around its horizontal or
vertical axis.

Example 9. Transposing an image

out = imtranspose(l mage. FLI P_LEFT_RI GHT)
out = imtranspose(l mage. FLI P_TOP_BOTTOM
out = imtranspose(l mage. ROTATE _90)

out = i mtranspose(l mage. ROTATE 180)

out = i mtranspose(l mage. ROTATE 270)

There's no difference in performance or result between t r anspose(ROTATE) and
corresponding r ot at e operations.

A more general form of image transformations can be carried out via the t r ansf orm
method. See the reference section for details.

Colour Transforms

The Python Imaging Library allows you to convert images between different pixel
representations using the convert function.

Example 10. Converting between modes

i m= I mage. open("l ena. ppn') . convert ("L")

The library supports transformations between each supported mode and the “L” and
“RGB” modes. To convert between other modes, you may have to use an intermediate
image (typically an “RGB” image).

rutorial

Image Enhancement

Filters

The Python Imaging Library provides a number of methods and modules that can be used
for image enhancement.

The | mageFi | t er module contains a number of pre-defined enhancement filters that can
be used with the fil t er method.

Example 11. Applying filters

i mport | nmageFilter
out = imfilter(lnageFilter.DETAIL)

Point Operations

The poi nt method can be used to translate the pixel values of an image. This can for
example be used to manipulate the image contrast. In most cases, you can use pass this
function a function object expecting one argument. Each pixel is processed according to
that function:

Example 12. Applying point transforms

multiply each pixel by 1.2
out = impoint(lanbda i: i * 1.2)

Using the above technique, you can quickly apply any simple expression to an image. You
can also combine the poi nt and past e methods to selectively modify an image:

Example 13. Processing individual bands

split the inmage into individual bands
source = imsplit()

R G B=0, 1, 2

select regions where red is |less than 100
mask = source[R].point(lanbda i: i < 100 and 255)

process the green band
out = source[G.point(lambda i: i * 0.7)

paste the processed band back, but only where red was < 100
source[G . paste(out, None, mask)

build a new mul ti band i mage
i m= | nage. merge(i m node, source)

Note the syntax used to create the mask:
imut = impoint(lanbda i: expression and 255)

Python only evaluates as much of a logical expression as is necessary to determine the
outcome, and returns the last value examined as the result of the expression. So if the

rutorial

expression above is false (0), Python does not look at the second operand, and thus
returns 0. Otherwise, it returns 255.

Enhancement

For more advanced image enhancement, use the classes in the | rageEnhance module.
Once created from an image, an enhancement object can be used to quickly try out
different settings.

You can adjust contrast, brightness, colour balance and sharpness in this way.

Example 14. Enhancing images

i mport | mageEnhance

enh = | mageEnhance. Contrast (i m
enh. enhance(1. 3). show("30% nore contrast")

Image Sequences

The Python Imaging Library contains some basic support for image sequences (also called
animation formats). Supported sequence formats include FLI/FLC, GIF, and a few
experimental formats. TIFF files can also contain more than one frame.

When you open a sequence file, PIL automatically loads the first frame in the sequence.
You can use the seek and t el | methods to change which frame to work with:

Example 15. Reading sequences

i mport | mage

im= | mage. open("ani mation.gif")
imseek(1l) # skip to the second frame

try:
while 1:
imseek(imtell()+1)
do sonething to im
except ECFError:
pass # end of sequence

As seen in this example, you'll get an EOFEr r or exception when the sequence ends.

Note that most drivers in the current version of the library only allows you to seek to the
next frame (as in the above example). To rewind the file, you may have to reopen it.

The following iterator class lets you to use the for-statement to loop over the sequence:

Example 16. A sequence iterator class

cl ass | mageSequence:
def __init__(self, im:
self.im=1im
def _ getitem_ (self, ix):
try:
ifoix:
sel f.imseek(ix)

rutorial

return self.im
except ECFError:
rai se IndexError # end of sequence

for franme in I nageSequence(in:
...do sonething to frane...

Postscript Printing

The Python Imaging Library includes functions to print images, text and graphics on
Postscript printers. Here's a simple example:

Example 17. Drawing Postscript

i mport | mage
i mport PSDraw

i m= | mage. open("I ena. ppnt')
title = "lena"
box = (1*72, 2*72, 7*72, 10*72) # in points

ps = PSDraw. PSDraw() # default is sys.stdout
ps. begi n_docunent (title)

draw the image (75 dpi)
ps. i mage(box, im 75)
ps. rect angl e(box)

draw centered title

ps. setfont ("Hel veti caNarr ow Bol d", 36)
w, h, b = ps.textsize(title)

ps.text ((4*72-w 2, 1*72-h), title)

ps. end_docunent ()

More on Reading Images

As described earlier, you use the open function in the | mage module to open an image
file. In most cases, you simply pass it the filename as argument:

i m= | mage. open("I ena. ppnt')

If everything goes well, the result is an | mage object. Otherwise, an | OErr or exception
is raised.

You can use a file-like object instead of the filename. The file object must implement
the r ead, seek and t el | methods, and be opened in binary mode.

Example 18. Reading from an open file

fp = open("l ena. ppmt, "rb")
i m= | mage. open(fp)

To read an image from data that you have in a string, use the Stri ngl Oclass:

rutorial

Example 19. Reading from a string

inmport StringlO

im= Image. open(Stringl O Stringl Q buffer))

Note that the library rewinds the file (using seek(0)) before reading the image header.
In addition, seek will also be used when the image data is read (by the load method). If
the image file is embedded in a larger file, such as a tar file, you can use the

Cont ai ner | Oor Tar | Omodules to access it.

Example 20. Reading from a tar archive

inmport TarlO
fp = TarlO Tarl ("I maging.tar", "lnmaging/test/|ena.ppnt)
im= | mage. open(fp)

See comments in these modules for details.

Controlling the Decoder

Some decoders allow you to manipulate the image while reading it from file. This can
often be used to speed up decoding when creating thumbnails (when speed is usually be
more important than quality) and printing to a monochrome laser printer (when only a
greyscale version of the image is needed).

The dr af t method manipulates an opened but not yet loaded image so it as closely as
possible matches the given mode and size. This is done by reconfiguring the image
decoder.

Example 21. Reading in draft mode
im= | nmage. open(file)
print "original =", imnode, imsize

imdraft("L", (100, 100))
print "draft =", imnobde, imsize

original = R&B (512, 512)
draft = L (128, 128)

Note that the resulting image may not exactly match the requested mode and size. To
make sure that the image is not larger than the given size, use the t hunbnai | method
instead.

Concepts

Bands

Mode

Size

The Python Imaging Library handles raster images, that is, rectangles of pixel data.

An image can consist of one or more bands of data. The Python Imaging Library allows
you to store several bands in a single image, provided they all have the same dimensions
and depth.

To get the number and names of bands in an image, use the get bands method.

The mode of an image defines the type and depth of a pixel in the image. The current
release supports the following standard modes:

- 1 (1-bit pixels, black and white, stored as 8-bit pixels)
- L (8-bit pixels, black and white)

- P (8-bit pixels, mapped to any other mode using a colour palette)

RGB (3x8-bit pixels, true colour)

- RGBA (4x8-bit pixels, true colour with transparency mask)

CMYK (4x8-bit pixels, colour separation)

YCbCr (3x8-bit pixels, colour video format)

| (32-bit integer pixels)

F (32-bit floating point pixels)

PIL also supports a few special modes, including RGBX (true colour with padding) and
RGBa (true colour with premultiplied alpha).

You can read the mode of an image through the node attribute. This is a string
containing one of the above values.

You can read the image size through the si ze attribute. This is a 2-tuple, containing the
horizontal and vertical size in pixels.

Coordinate System

The Python Imaging Library uses a Cartesian pixel coordinate system, with (0,0) in the
upper left corner. Note that the coordinates refer to the implied pixel corners; the
centre of a pixel addressed as (0, 0) actually lies at (0.5, 0.5):

/8, 8l

x

Loncepts

Coordinates are usually passed to the library as 2-tuples (X, y). Rectangles are
represented as 4-tuples, with the upper left corner given first. For example, a rectangle
covering all of an 800x600 pixel image is written as (0, 0, 800, 600).

Palette

The palette mode ("P") uses a colour palette to define the actual colour for each pixel.

Info

You can attach auxiliary information to an image using the i nf o attribute. This is a
dictionary object.

How such information is handled when loading and saving image files is up to the file
format handler (see the chapter on Image File Formats).

10

The Image Module

The | mage module provides a class with the same name which is used to represent a PIL
image. The module also provides a number of factory functions, including functions to
load images from files, and to create new images.

Examples

Example 1. Open, rotate, and display an image
i mport | mage

im= | mage. open("bride.jpg")

i mrotate(45).show)

Example 2. Create thumbnails

i mport gl ob

for infile in glob.glob("*.jpg"):
try:
outfile = os.splitext(file)[0O] + ".thunbnail"
I mage. open(infile).resize(128, 128).save(outfile, "JPEG')
except :
print "Cannot create thunbnail for %" %infile

Functions

new

open

blend

new(node, size [,colour]). Creates a new image with the given mode and size. Size
is given as a 2-tuple. The colour is given as a single numerical value for single-band
images, and a tuple for multi-band images. If the colour is omitted, the image is filled
with black. If the colour is None, the image is not initialised.

open(infile [, node]) . Opens and identifies the given image file. The actual image
data is not read from the file until you try to process the data (or call the load method).
If the mode is given, it must be “r”.

You can use either a string (giving the filename) or a file object. In the latter case, the
file object must implement r ead, seek, and t el | methods, and be opened in binary
mode.

bl end(i magel, inmage2, al pha). Creates a new image by interpolating between the
given images, using a constant alpha. Both images must have the same size and mode.

out = imagel * (1.0 - alpha) + image2 * al pha

11

Ine 1mage ivioauie

If alpha is 0.0, a copy of the first image is returned. If alpha is 1.0, a copy of the second
image is returned. There are no restrictions on the alpha value. If necessary, the result is
clipped to fit into the allowed output range.

composite

eval

conposi t e(i magel, inmage2, mask) . Creates a new image by interpolating between the
given images, using the mask as alpha. The mask can be either “1”, “L”, or “RGBA”. All
images must have the same size.

eval (function, image). Applies the function (which should take one argument) to
each pixel in the given image. If the image has more than one band, the same function is
applied to each band. Note that the function is evaluated once for each possible pixel
value, so you cannot use random components or other generators.

fromstring

merge

fromstri ng(node, size, data). Creates an image memory from pixel data in a string,
using the standard “raw” decoder.

fromstring(node, size, data, decoder, paraneters).Same, but allows you to use
any pixel decoder supported by PIL. For more information on available decoders, see the
section Writing Your Own File Decoder.

Note that this function decodes pixel data, not entire images. If you have an entire
image in a string, wrap it in a St ri ngl Oobject, and use open to load it.

mer ge(node, bands) . Creates a new image from a number of single band images. The
bands are given as a tuple or list of images, one for each band described by the mode.
All bands must have the same size.

Methods

An instance of the Image class have the following methods. Unless otherwise stated, all
methods return a new instance of the | nage class, holding the resulting image.

convert

convert (node) . Returns a converted copy of an image. For the “P” mode, this translates
pixels through the palette. If mode is omitted, a mode is chosen so that all information
in the image and the palette can be represented without a palette.

The current release supports all possible conversions between “L”, “RGB” and “CMYK.”

When translating a colour image to black and white (mode “L”), the library uses the ITU-
R 601-2 luma transform:

L = R* 299/1000 + G * 587/1000 + B * 114/1000

When translating an greyscale image into a bilevel image (mode “1”), all non-zero values
are set to 255 (white). To use other thresholds, use the poi nt method.

12

Ine 1mage ivioauie

convert (node, matrix). Converts an “RGB” image to “L” or “RGB” using a conversion
matrix. The matrix is a 4- or 16-tuple.

The following example converts an RGB image (linearly calibrated according to ITU-R
709, using the D65 luminant) to the CIE XYZ colour space:

Example 3. Convert RGB to XYZ

rgh2xyz = (

0. 412453, 0.357580, 0.180423, O,
0.212671, 0.715160, 0.072169, O,
0.019334, 0.119193, 0.950227, 0)

out imconvert ("RG", rgh2xyz)

copy
copy() - Copies the image. Use this method if you wish to paste things into an image, but
still retain the original.

Ccrop
cr op(box) . Returns a rectangular region from the current image. The box is a 4-tuple
defining the left, upper, right, and lower pixel coordinate.

draft
draft (nmode, size). Configures the image file loader so it returns a version of the
image that as closely as possible matches the given mode and size. For example, you can
use this method to convert a colour JPEG to greyscale while loading it, or to extract a
128x192 version from a PCD file. Note that this method modifies the Image object in
place. If the image has already been loaded, this method has no effect.

filter
filter(filter).Returns a copy of an image filtered by the given filter. For a list of
available filters, see the | mageFi | t er module.

fromstring
fronstring(data), fronstring(data, decoder, paraneters).Same as the
fromst ri ng function, but loads data into the current image.

getbands
get bands() . Returns a tuple containing the name of each band. For example, get bands
on an RGB image returns (“R”, “G”, “B”).

getbbox

get bbox() . Calculates the bounding box of the non-zero regions in the image. The
bounding box is returned as a 4-tuple defining the left, upper, right, and lower pixel
coordinate. If the image is completely empty, this method returns None.

13

Ine 1mage ivioauie

getdata

get dat a() . Returns the contents of a the image as a sequence object containing pixel
values. The sequence object is flattened, so that values for line one follows directly
after the values for line zero, and so on.

getextrema

get ext rema() . Returns a 2-tuple containing the minimum and maximum values in the
image. In this version, this only works for single-band images.

getpixel

get pi xel (xy) . Returns the pixel at the given position. If the image is a multi-layer
image, this method returns a tuple.

histogram

hi st ogr an() . Returns a histogram for the image. The histogram is returned as a list of
pixel counts, one for each pixel value in the source image. If the image has more than
one band, the histograms for all bands are concatenated (for example, the histogram for
an “RGB” image contains 768 values).

A bilevel image (mode “1) is treated as an greyscale (“L””) image by this method.

hi st ogr an{ mask) . Returns a histogram for those parts of the image where the mask
image is non-zero. The mask image must have the same size as the image, and be either
a bi-level image (mode “1”) or a greyscale image (“L”).

load

| oad() . Allocates storage for the image and loads it from the file. In normal cases, you
don't need to call this method, since the Image class automatically loads an opened
image when it is accessed the first time.

offset

(Deprecated). of f set (xof f set, yof fset). Returns a copy of the image where data
have been offset by the given distances. Data wraps around the edges. If yoffset is
omitted, it is assumed to be equal to xoffset.

This method is deprecated. New code should use the of f set function in the | mageChops
module.

paste

past e(i mage, box) . Pastes an image into self. The box argument is either a 2-tuple
giving the upper left corner, or a 4-tuple defining the left, upper, right, and lower pixel
coordinate. If None is given instead of a tuple, all of self is assumed. In any case, the size
of the pasted image must match the size of the region.

If the mode does not match the mode of self, conversions are automatically applied (see
the convert method for details).

14

Ine 1mage ivioauie

past e(col our, box). Same as above, but fills the region with a single colour. The
colour is given as a single numerical value for single-band images, and a tuple for multi-
band images.

past e(i mage, box, mask). Same as above, but updates only the regions indicated by
the mask. You can use either “1”, “L” or “RGBA” images (in the latter case, the alpha
band is used as mask). Where the mask is 255, the given image is copied as is. Where the
mask is 0, the current value is preserved. Intermediate values can be used for
transparency effects.

Note that if you paste an “RGBA” image, the alpha band is ignored unless you use the
same image as mask.

past e(col our, box, mask) . Same as above, but fills the region with a single colour.

point
poi nt (t abl e) , poi nt (functi on) . Returns a copy of the image where each pixel has
been mapped through the given table. The table should contains 256 values per band in
the image. If a function is used instead, it should take a single argument. The function is
called once for each possible pixel value, and the resulting table is applied to all bands
of the image.
If the image has mode “I”” (integer) or “F” (floating point), you must use a function, and
it must have the following format:

argunment * scale + offset
Example 4. Map floating point images
out = impoint(lambda i: i * 1.2 + 10)

You can leave out either the scal e or the of f set .
poi nt (t abl e, node), poi nt (function, node). Map the image through table, and
convert it on fly. In this version, this can only be used to convert “L” and “P” images to
“1” in one step, e.g. to threshold an image.

putalpha
put al pha(band) . Copies the given band to the alpha layer of self. Self must be an
“RGBA” image, and the band must be either “L” or “1”.

putdata
putdata(data [[, scale [, offset]]). Copy pixel values from a sequence object
into the image, starting at the upper left corner. The scale and offset values are used to
adjust the sequence values. If the scale is omitted, it defaults to 1.0. If the offset is
omitted, it defaults to 0.0.

putpalette

put pal ett e(sequence) . Attach a palette to a “P” or “L” image. The palette sequence
should contain 768 integer values, where each group of three values represent the red,
green, and blue values for the corresponding pixel index. Instead of an integer sequence,
you can use an 8-bit string.

15

Ine 1mage ivioauie

putpixel

resize

rotate

save

seek

show

put pi xel (xy, col our) . Modifies the pixel at the given position. The colour is given as a
single numerical value for single-band images, and a tuple for multi-band images.

For more extensive changes, use past e or the | mageDr aw module instead.

resi ze(size),resize(size, filter). Returnsa resized copy of an image. The size
argument gives the requested size in pixels, as a 2-tuple: (wi dt h, hei ght).

The filter argument can be NEAREST, BI LI NEAR, or BI CUBI C. If omitted, it defaults to
NEAREST.

rotate(angl e), rotate(angle, filter).Returnsa copy of an image rotated the given
number of degrees counter clockwise around its centre.

The filter argument can be NEAREST, BI LI NEAR, or Bl CUBI C. If omitted, it defaults to
NEAREST.

save(outfile, options), save(outfile, format, options). Saves the image under
the given filename. If format is omitted, the format is determined from the filename
extension, if possible. This method returns None.

Keyword options can be used to provide additional instructions to the writer. If a writer
doesn't recognise an option, it is silently ignored. The available options are described
later in this handbook.

You can use a file object instead of a filename. In this case, you must always specify the
format. The file object must implement the seek, tel | , and wri t e methods, and be
opened in binary mode.

seek(frame). Seeks to the given frame in a sequence file. If you seek beyond the end of
the sequence, the method raises an ECFEr r or exception. When a sequence file is
opened, the library automatically seeks to frame 0.

Note that in the current version of the library, most sequence formats only allows you to
seek to the next frame.

show() . Displays an image. This method is mainly intended for debugging purposes.

On Unix platforms, this method saves the image to a temporary PPM file, and calls the xv
utility.

On Windows, it saves the image to a temporary BMP file, and runs the st art command
on it to start the registered BMP display utility (usually Pai nt).

This method returns None.

16

Ine 1mage ivioauie

split
split (). Returns a tuple of individual image bands from an image. For example, if you
split an “RGB” image, you get three new images, containing copies of the red, green,
and blue bands from the original image.

tell
tel | (). Returns the current frame number.

thumbnail
t hunbnai | (si ze) . Modifies the image to contain a thumbnail version of itself, no larger
than the given size. This method calculates an appropriate thumbnail size to preserve
the aspect of the image, calls the draft method to configure the file reader (where
applicable), and finally resizes the image.
Note that this function modifies the Image object in place. If you need to use the full
resolution image as well, apply this method to a copy of the original image. This method
returns None.

tobitmap
t obi t map() . Returns the image converted to an X11 bitmap.

tostring
tostring() . Returns a string containing pixel data, using the standard “raw” encoder.
tostring(decoder, paraneters).

transform
transforn(size, nethod, data),transforn(size, nmethod, data, filter).
Creates a new image with the given size, and the same mode as the original, and copies
data to the new image using the given transform.
In this version, the method argument can be EXTENT (cut out a rectangular subregion),
AFFI NE (affine transform), QUAD (map a quadrilateral to a rectangle), or MESH (map a
number of source quadrilaterals in one operation). The various methods are described
below.
The filter argument defines how to filter pixels from the source image. In this version, it
can be NEAREST (use nearest neighbour), Bl LI NEAR (linear interpolatation in a 2x2
environment), or Bl CUBI C (cubic spline interpolation in a 4x4 environment). If omitted,
it defaults to NEAREST.

transform(EXTENT)

transforn(size, EXTENT, data),transforn(size, EXTENT, data, filter).
Extracts a subregion from the image.

Data is a 4-tuple (x0, y0, x1, y1) which specifies two points in the input image's
coordinate system. The resulting image will contain data sampled from between these

17

Ine 1mage ivioauie

two points, so that (x0, y0) in the input image will end up at (0,0) in the output image,
and (x1, y1) at size.

This method can be used to crop, stretch, shrink, or mirror an arbitrary rectangle in the
current image. It is slightly slower than cr op, but about as fast as a corresponding
resi ze operation.

transform(AFFINE)

transforn(si ze, AFFINE, data),transforn(size, AFFINE, data, filter). Applies
an affine transform to the image, and places the result in a new image with the given
size.

Data is a 6-tuple (a, b, c, d, e, f) which contain the first two rows from an affine
transform matrix. For each pixel (x, y) in the output image, the new value is taken from
a position (ax+by+c, dx+ey+f)in the input image, rounded to nearest pixel.

This function can be used to scale, translate, rotate, and shear the original image.
transform(QUAD)

transforn(size, QUAD, data),transforn(size, QUAD, data, filter).Mapsa
guadrilateral (a region defined by four corners) from the image to a rectangle with the
given size.

Data is an 8-tuple (x0, y0, x1, y1, x2, y2, y3, y3) which contain the upper left, lower
left, lower right, and upper right corner of the source quadrilateral.

transform(MESH)

transforn(size, MESH, data),transforn(size, MESH, data, filter). Similar to
QUAD, but data is a list of target rectangles and corresponding source quadrilaterals.

transpose

t ranspose(met hod) . Returns a flipped or rotated copy of an image.

Method can be one of the following: FLI P_LEFT_RI GHT, FLI P_TOP_BOTTOM, ROTATE_90,
ROTATE_180, or ROTATE_270.

verify

verify(). Attempts to determine if the file is broken, without actually decoding the
image data. If this method finds any problems, it raises suitable exceptions. If you need
to load the image after using this method, you must reopen the image file.

Attributes

Instances of the | mage class have the following attributes:

format

The file format that this image was read from. For images created by the library, this
attribute is set to None.

18

Ine 1mage ivioauie

mode
Image mode. This is a string specifying the pixel format used by the image, with typical
values like “1”, “L”, “RGB”, or “CMYK.”
size
Image size, in pixels. The size is given as a 2-tuple, with the width given first.
palette
Colour palette table, if any. If mode is “P”, this should be an instance of the
| magePal et t e class. Otherwise, it should be set to None.
info

A dictionary holding data associated with the image.

19

