
Pegasus 3.1.0 Advanced Configuration

Pegasus 3.1.0 Advanced Configuration

iii

Table of Contents
1. . 1

Properties . 1
pegasus.home .. 1
Local Directories . 2
Site Directories . 3
Schema File Location Properties . 5
Database Drivers For All Relational Catalogs . 5
Catalog Properties . 8
Replica Selection Properties . 14
Site Selection Properties . 16
Data Staging Configuration . 19
Transfer Configuration Properties . 20
Gridstart And Exitcode Properties . 26
Interface To Condor And Condor Dagman .. 28
Monitoring Properties . 29
Job Clustering Properties . 31
Logging Properties . 33
Miscellaneous Properties . 35

1

Properties

This is the reference guide to all properties regarding the Pegasus Workflow Planner, and their respective default
values. Please refer to the user guide for a discussion when and which properties to use to configure various
components. Please note that the values rely on proper capitalization, unless explicitly noted otherwise.

Some properties rely with their default on the value of other properties. As a notation, the curly braces refer to the value
of the named property. For instance, ${pegasus.home} means that the value depends on the value of the pegasus.home
property plus any noted additions. You can use this notation to refer to other properties, though the extent of the
subsitutions are limited. Usually, you want to refer to a set of the standard system properties. Nesting is not allowed.
Substitutions will only be done once.

There is a priority to the order of reading and evaluating properties. Usually one does not need to worry about the
priorities. However, it is good to know the details of when which property applies, and how one property is able to
overwrite another. The following is a mutually exclusive list (highest priority first) of property file locations.

1. --conf option to the tools. Almost all of the clients that use properties have a --conf option to specify the property
file to pick up.

2. submit-dir/pegasus.xxxxxxx.properties file. All tools that work on the submit directory (i.e after pegasus has
planned a workflow) pick up the pegasus.xxxxx.properties file from the submit directory. The location for the
pegasus.xxxxxxx.propertiesis picked up from the braindump file.

3. The properties defined in the user property file ${user.home}/.pegasusrc have lowest priority.

Commandline properties have the highest priority. These override any property loaded from a property file. Each
commandline property is introduced by a -D argument. Note that these arguments are parsed by the shell wrapper, and
thus the -D arguments must be the first arguments to any command. Commandline properties are useful for debugging
purposes.

From Pegasus 3.1 release onwards, support has been dropped for the following properties that were used to signify
the location of the properties file

• pegasus.properties

• pegasus.user.properties

The following example provides a sensible set of properties to be set by the user property file. These properties use
mostly non-default settings. It is an example only, and will not work for you:

pegasus.catalog.replica File
pegasus.catalog.replica.file ${pegasus.home}/etc/sample.rc.data
pegasus.catalog.transformation Text
pegasus.catalog.transformation.file ${pegasus.home}/etc/sample.tc.text
pegasus.catalog.site XML3
pegasus.catalog.site.file ${pegasus.home}/etc/sample.sites.xml3

If you are in doubt which properties are actually visible, pegasus during the planning of the workflow dumps all
properties after reading and prioritizing in the submit directory in a file with the suffix properties.

pegasus.home
Systems: all

Type: directory location string

Default: "$PEGASUS_HOME"

The property pegasus.home cannot be set in the property file. This property is automatically set up by the pegasus
clients internally by determining the installation directory of pegasus. Knowledge about this property is important for
developers who want to invoke PEGASUS JAVA classes without the shell wrappers.

2

Local Directories

This section describes the GNU directory structure conventions. GNU distinguishes between architecture independent
and thus sharable directories, and directories with data specific to a platform, and thus often local. It also distinguishes
between frequently modified data and rarely changing data. These two axis form a space of four distinct directories.

pegasus.home.datadir

Systems: all

Type: directory location string

Default: ${pegasus.home}/share

The datadir directory contains broadly visiable and possilby exported configuration files that rarely change. This
directory is currently unused.

pegasus.home.sysconfdir

Systems: all

Type: directory location string

Default: ${pegasus.home}/etc

The system configuration directory contains configuration files that are specific to the machine or installation, and
that rarely change. This is the directory where the XML schema definition copies are stored, and where the base pool
configuration file is stored.

pegasus.home.sharedstatedir

Systems: all

Type: directory location string

Default: ${pegasus.home}/com

Frequently changing files that are broadly visible are stored in the shared state directory. This is currently unused.

pegasus.home.localstatedir

Systems: all

Type: directory location string

Default: ${pegasus.home}/var

Frequently changing files that are specific to a machine and/or installation are stored in the local state directory. This
directory is being used for the textual transformation catalog, and the file-based replica catalog.

pegasus.dir.submit.logs

System: Pegasus

Since: 2.4

Type: directory location string

Default: false

3

By default, Pegasus points the condor logs for the workflow to /tmp directory. This is done to ensure that the logs
are created in a local directory even though the submit directory maybe on NFS. In the submit directory the symbolic
link to the appropriate log file in the /tmp exists.

However, since /tmp is automatically purged in most cases, users may want to preserve their condor logs in a directory
on the local filesystem other than /tmp

Site Directories
The site directory properties modify the behavior of remotely run jobs. In rare occasions, it may also pertain to locally
run compute jobs.

pegasus.dir.useTimestamp

System: Pegasus

Since: 2.1

Type: Boolean

Default: false

While creating the submit directory, Pegasus employs a run numbering scheme. Users can use this property to use a
timestamp based numbering scheme instead of the runxxxx scheme.

pegasus.dir.exec

System: Pegasus

Since: 2.0

Type: remote directory location string

Default: (no default)

This property modifies the remote location work directory in which all your jobs will run. If the path is relative then
it is appended to the work directory (associated with the site), as specified in the site catalog. If the path is absolute
then it overrides the work directory specified in the site catalog.

pegasus.dir.storage

System: Pegasus

Since: 2.0

Type: remote directory location string

Default: (no default)

This property modifies the remote storage location on various pools. If the path is relative then it is appended to the
storage mount point specified in the pool.config file. If the path is absolute then it overrides the storage mount point
specified in the pool config file.

pegasus.dir.storage.deep

System: Pegasus

Since: 2.1

Type: Boolean

Default: false

See Also: pegasus.dir.storage

4

See Also: pegasus.dir.useTimestamp

This property results in the creation of a deep directory structure on the output site, while populating the results. The
base directory on the remote end is determined from the site catalog and the property pegasus.dir.storage.

To this base directory, the relative submit directory structure ($user/$vogroup/$label/runxxxx) is appended.

$storage = $base + $relative_submit_directory

Depending on the number of files being staged to the remote site a Hashed File Structure is created that ensures that
only 256 files reside in one directory.

To create this directory structure on the storage site, Pegasus relies on the directory creation feature of the Grid FTP
server, which appeared in globus 4.0.x

pegasus.dir.create.strategy

System: Pegasus

Since: 2.2

Type: enumeration

Value[0]: HourGlass

Value[1]: Tentacles

Default: Tentacles

If the

--randomdir

option is given to the Planner at runtime, the Pegasus planner adds nodes that create the random directories at the
remote pool sites, before any jobs are actually run. The two modes determine the placement of these nodes and their
dependencies to the rest of the graph.

HourGlass It adds a make directory node at the top level of the graph, and all these concat to a single dummy job
before branching out to the root nodes of the original/ concrete dag so far. So we introduce a classic
X shape at the top of the graph. Hence the name HourGlass.

Tentacles This option places the jobs creating directories at the top of the graph. However instead of constricting
it to an hour glass shape, this mode links the top node to all the relevant nodes for which the create
dir job is necessary. It looks as if the node spreads its tentacleas all around. This puts more load on
the DAGMan because of the added dependencies but removes the restriction of the plan progressing
only when all the create directory jobs have progressed on the remote pools, as is the case in the
HourGlass model.

pegasus.dir.create.impl

System: Pegasus

Since: 2.2

Type: enumeration

Value[0]: DefaultImplementation

Value[1]: S3

Default: DefaultImpelmentation

This property is used to select the executable that is used to create the working directory on the compute sites.

DefaultImplementation The default executable that is used to create a directory is the dirmanager executable
shipped with Pegasus. It is found at $PEGASUS_HOME/bin/dirmanager in the

5

pegasus distribution. An entry for transformation pegasus::dirmanager needs to
exist in the Transformation Catalog or the PEGASUS_HOME environment variable
should be specified in the site catalog for the sites for this mode to work.

S3 This option is used to create buckets in S3 instead of a directory. This should
be set when running workflows on Amazon EC2. This implementation relies on
s3cmd command line client to create the bucket. An entry for transformation
amazon::s3cmd needs to exist in the Transformation Catalog for this to work.

Schema File Location Properties
This section defines the location of XML schema files that are used to parse the various XML document instances in
the PEGASUS. The schema backups in the installed file-system permit PEGASUS operations without being online.

pegasus.schema.dax

Systems: Pegasus

Since: 2.0

Type: XML schema file location string

Value[0]: ${pegasus.home.sysconfdir}/dax-3.2.xsd

Default: ${pegasus.home.sysconfdir}/dax-3.2.xsd

This file is a copy of the XML schema that describes abstract DAG files that are the result of the abstract planning
process, and input into any concrete planning. Providing a copy of the schema enables the parser to use the local copy
instead of reaching out to the internet, and obtaining the latest version from the GriPhyN website dynamically.

pegasus.schema.sc

Systems: Pegasus

Since: 2.0

Type: XML schema file location string

Value[0]: ${pegasus.home.sysconfdir}/sc-3.0.xsd

Default: ${pegasus.home.sysconfdir}/sc-3.0.xsd

This file is a copy of the XML schema that describes the xml description of the site catalog, that is generated as a result
of using genpoolconfig command. Providing a copy of the schema enables the parser to use the local copy instead of
reaching out to the internet, and obtaining the latest version from the GriPhyN website dynamically.

pegasus.schema.ivr

Systems: all

Type: XML schema file location string

Value[0]: ${pegasus.home.sysconfdir}/iv-2.0.xsd

Default: ${pegasus.home.sysconfdir}/iv-2.0.xsd

This file is a copy of the XML schema that describes invocation record files that are the result of the a grid launch in
a remote or local site. Providing a copy of the schema enables the parser to use the local copy instead of reaching out
to the internet, and obtaining the latest version from the GriPhyN website dynamically.

Database Drivers For All Relational Catalogs

6

pegasus.catalog.*.db.driver

System: Pegasus

Type: Java class name

Value[0]: Postgres

Value[1]: MySQL

Value[2]: SQLServer2000 (not yet implemented!)

Value[3]: Oracle (not yet implemented!)

Default: (no default)

See also: pegasus.catalog.provenance

The database driver class is dynamically loaded, as required by the schema. Currently, only PostGreSQL 7.3 and
MySQL 4.0 are supported. Their respective JDBC3 driver is provided as part and parcel of the PEGASUS.

A user may provide their own implementation, derived from org.griphyn.vdl.dbdriver.DatabaseDriver, to talk to a
database of their choice.

For each schema in PTC, a driver is instantiated separately, which has the same prefix as the schema. This may result
in multiple connections to the database backend. As fallback, the schema "*" driver is attempted.

The * in the property name can be replaced by a catalog name to apply the property only for that catalog. Valid catalog
names are

replica
provenance

pegasus.catalog.*.db.url

System: PTC, ...

Type: JDBC database URI string

Default: (no default)

Example: jdbc:postgresql:${user.name}

Each database has its own string to contact the database on a given host, port, and database. Although most driver URLs
allow to pass arbitrary arguments, please use the pegasus.catalog.[catalog-name].db.* keys or pegasus.catalog.*.db.*
to preload these arguments. THE URL IS A MANDATORY PROPERTY FOR ANY DBMS BACKEND.

Postgres : jdbc:postgresql:[//hostname[:port]/]database
MySQL : jdbc:mysql://hostname[:port]]/database
SQLServer: jdbc:microsoft:sqlserver://hostname:port
Oracle : jdbc:oracle:thin:[user/password]@//host[:port]/service

The * in the property name can be replaced by a catalog name to apply the property only for that catalog. Valid catalog
names are

replica
provenance

pegasus.catalog.*.db.user

System: PTC, ...

Type: string

Default: (no default)

7

Example: ${user.name}

In order to access a database, you must provide the name of your account on the DBMS. This property is database-
independent. THIS IS A MANDATORY PROPERTY FOR MANY DBMS BACKENDS.

The * in the property name can be replaced by a catalog name to apply the property only for that catalog. Valid catalog
names are

replica
provenance

pegasus.catalog.*.db.password

System: PTC, ...

Type: string

Default: (no default)

Example: ${user.name}

In order to access a database, you must provide an optional password of your account on the DBMS. This property
is database-independent. THIS IS A MANDATORY PROPERTY, IF YOUR DBMS BACKEND ACCOUNT
REQUIRES A PASSWORD.

The * in the property name can be replaced by a catalog name to apply the property only for that catalog. Valid catalog
names are

replica
provenance

pegasus.catalog.*.db.*

System: PTC, RC

Each database has a multitude of options to control in fine detail the further behaviour. You may want to check the
JDBC3 documentation of the JDBC driver for your database for details. The keys will be passed as part of the connect
properties by stripping the "pegasus.catalog.[catalog-name].db." prefix from them. The catalog-name can be replaced
by the following values provenance for Provenance Catalog (PTC), replica for Replica Catalog (RC)

Postgres 7.3 parses the following properties:

pegasus.catalog.*.db.user
pegasus.catalog.*.db.password
pegasus.catalog.*.db.PGHOST
pegasus.catalog.*.db.PGPORT
pegasus.catalog.*.db.charSet
pegasus.catalog.*.db.compatible

MySQL 4.0 parses the following properties:

pegasus.catalog.*.db.user
pegasus.catalog.*.db.password
pegasus.catalog.*.db.databaseName
pegasus.catalog.*.db.serverName
pegasus.catalog.*.db.portNumber
pegasus.catalog.*.db.socketFactory
pegasus.catalog.*.db.strictUpdates
pegasus.catalog.*.db.ignoreNonTxTables
pegasus.catalog.*.db.secondsBeforeRetryMaster
pegasus.catalog.*.db.queriesBeforeRetryMaster
pegasus.catalog.*.db.allowLoadLocalInfile
pegasus.catalog.*.db.continueBatchOnError
pegasus.catalog.*.db.pedantic

8

pegasus.catalog.*.db.useStreamLengthsInPrepStmts
pegasus.catalog.*.db.useTimezone
pegasus.catalog.*.db.relaxAutoCommit
pegasus.catalog.*.db.paranoid
pegasus.catalog.*.db.autoReconnect
pegasus.catalog.*.db.capitalizeTypeNames
pegasus.catalog.*.db.ultraDevHack
pegasus.catalog.*.db.strictFloatingPoint
pegasus.catalog.*.db.useSSL
pegasus.catalog.*.db.useCompression
pegasus.catalog.*.db.socketTimeout
pegasus.catalog.*.db.maxReconnects
pegasus.catalog.*.db.initialTimeout
pegasus.catalog.*.db.maxRows
pegasus.catalog.*.db.useHostsInPrivileges
pegasus.catalog.*.db.interactiveClient
pegasus.catalog.*.db.useUnicode
pegasus.catalog.*.db.characterEncoding

MS SQL Server 2000 support the following properties (keys are case-insensitive, e.g. both "user" and "User" are valid):

pegasus.catalog.*.db.User
pegasus.catalog.*.db.Password
pegasus.catalog.*.db.DatabaseName
pegasus.catalog.*.db.ServerName
pegasus.catalog.*.db.HostProcess
pegasus.catalog.*.db.NetAddress
pegasus.catalog.*.db.PortNumber
pegasus.catalog.*.db.ProgramName
pegasus.catalog.*.db.SendStringParametersAsUnicode
pegasus.catalog.*.db.SelectMethod

The * in the property name can be replaced by a catalog name to apply the property only for that catalog. Valid catalog
names are

replica
provenance

Catalog Properties

Replica Catalog

pegasus.catalog.replica

System: Pegasus

Since: 2.0

Type: enumeration

Value[0]: RLS

Value[1]: LRC

Value[2]: JDBCRC

Value[3]: File

Value[4]: MRC

Default: RLS

Pegasus queries a Replica Catalog to discover the physical filenames (PFN) for input files specified in the DAX.
Pegasus can interface with various types of Replica Catalogs. This property specifies which type of Replica Catalog
to use during the planning process.

RLS RLS (Replica Location Service) is a distributed replica catalog, which ships with GT4. There is an index
service called Replica Location Index (RLI) to which 1 or more Local Replica Catalog (LRC) report. Each

9

LRC can contain all or a subset of mappings. In this mode, Pegasus queries the central RLI to discover in
which LRC's the mappings for a LFN reside. It then queries the individual LRC's for the PFN's. To use
RLS, the user additionally needs to set the property pegasus.catalog.replica.url to specify the URL for the
RLI to query. Details about RLS can be found at http://www.globus.org/toolkit/data/rls/

LRC If the user does not want to query the RLI, but directly a single Local Replica Catalog. To use LRC, the
user additionally needs to set the property pegasus.catalog.replica.url to specify the URL for the LRC to
query. Details about RLS can be found at http://www.globus.org/toolkit/data/rls/

JDBCRC In this mode, Pegasus queries a SQL based replica catalog that is accessed via JDBC. The sql schema's
for this catalog can be found at $PEGASUS_HOME/sql directory. To use JDBCRC, the user additionally
needs to set the following properties

1. pegasus.catalog.replica.db.url

2. pegasus.catalog.replica.db.user

3. pegasus.catalog.replica.db.password

File In this mode, Pegasus queries a file based replica catalog. It is neither transactionally safe, nor advised to
use for production purposes in any way. Multiple concurrent instances will clobber each other!. The site
attribute should be specified whenever possible. The attribute key for the site attribute is "pool".

The LFN may or may not be quoted. If it contains linear whitespace, quotes, backslash or an equality sign,
it must be quoted and escaped. Ditto for the PFN. The attribute key-value pairs are separated by an equality
sign without any whitespaces. The value may be in quoted. The LFN sentiments about quoting apply.

LFN PFN
LFN PFN a=b [..]
LFN PFN a="b" [..]
"LFN w/LWS" "PFN w/LWS" [..]

To use File, the user additionally needs to specify pegasus.catalog.replica.file property to specify the path
to the file based RC.

MRC In this mode, Pegasus queries multiple replica catalogs to discover the file locations on the grid. To use it set

pegasus.catalog.replica MRC

Each associated replica catalog can be configured via properties as follows.

The user associates a variable name referred to as [value] for each of the catalogs, where [value] is any
legal identifier (concretely [A-Za-z][_A-Za-z0-9]*) For each associated replica catalogs the user specifies
the following properties.

pegasus.catalog.replica.mrc.[value] specifies the type of replica catalog.
pegasus.catalog.replica.mrc.[value].key specifies a property name key for a
particular catalog

For example, if a user wants to query two lrc's at the same time he/she can specify as follows

pegasus.catalog.replica.mrc.lrc1 LRC
pegasus.catalog.replica.mrc.lrc2.url rls://sukhna
pegasus.catalog.replica.mrc.lrc2 LRC
pegasus.catalog.replica.mrc.lrc2.url rls://smarty

In the above example, lrc1, lrc2 are any valid identifier names and url is the property key that needed to
be specified.

pegasus.catalog.replica.url

System: Pegasus

10

Since: 2.0

Type: URI string

Default: (no default)

When using the modern RLS replica catalog, the URI to the Replica catalog must be provided to Pegasus to enable
it to look up filenames. There is no default.

pegasus.catalog.replica.chunk.size

System: Pegasus, rc-client

Since: 2.0

Type: Integer

Default: 1000

The rc-client takes in an input file containing the mappings upon which to work. This property determines, the number
of lines that are read in at a time, and worked upon at together. This allows the various operations like insert, delete
happen in bulk if the underlying replica implementation supports it.

pegasus.catalog.replica.lrc.ignore

System: Replica Catalog - RLS

Since: 2.0

Type: comma separated list of LRC urls

Default: (no default)

See also: pegasus.catalog.replica.lrc.restrict

Certain users may like to skip some LRCs while querying for the physical locations of a file. If some LRCs need to
be skipped from those found in the rli then use this property. You can define either the full URL or partial domain
names that need to be skipped. E.g. If a user wants rls://smarty.isi.edu and all LRCs on usc.edu to be skipped then the
property will be set as pegasus.rls.lrc.ignore=rls://smarty.isi.edu,usc.edu

pegasus.catalog.replica.lrc.restrict

System: Replica Catalog - RLS

Since: 1.3.9

Type: comma separated list of LRC urls

Default: (no default)

See also: pegasus.catalog.replica.lrc.ignore

This property applies a tighter restriction on the results returned from the LRCs specified. Only those PFNs are
returned that have a pool attribute associated with them. The property "pegasus.rc.lrc.ignore" has a higher priority
than "pegasus.rc.lrc.restrict". For example, in case a LRC is specified in both properties, the LRC would be ignored
(i.e. not queried at all instead of applying a tighter restriction on the results returned).

pegasus.catalog.replica.lrc.site.[site-name]

System: Replica Catalog - RLS

Since: 2.3.0

Type: LRC url

Default: (no default)

11

This property allows for the LRC url to be associated with site handles. Usually, a pool attribute is required to be
associated with the PFN for Pegasus to figure out the site on which PFN resides. However, in the case where an LRC
is responsible for only a single site's mappings, Pegasus can safely associate LRC url with the site. This association
can be used to determine the pool attribute for all mappings returned from the LRC, if the mapping does not have a
pool attribute associated with it.

The site_name in the property should be replaced by the name of the site. For example

pegasus.catalog.replica.lrc.site.isi rls://lrc.isi.edu

tells Pegasus that all PFNs returned from LRC rls://lrc.isi.edu are associated with site isi.

The [site_name] should be the same as the site handle specified in the site catalog.

pegasus.catalog.replica.cache.asrc

System: Pegasus

Since: 2.0

Type: Boolean

Value[0]: false

Value[1]: true

Default: false

See also: pegasus.catalog.replica

This property determines whether to treat the cache file specified as a supplemental replica catalog or not. User can
specify on the command line to pegasus-plan a comma separated list of cache files using the --cache option. By default,
the LFN->PFN mappings contained in the cache file are treated as cache, i.e if an entry is found in a cache file the
replica catalog is not queried. This results in only the entry specified in the cache file to be available for replica
selection.

Setting this property to true, results in the cache files to be treated as supplemental replica catalogs. This results in
the mappings found in the replica catalog (as specified by pegasus.catalog.replica) to be merged with the ones found
in the cache files. Thus, mappings for a particular LFN found in both the cache and the replica catalog are available
for replica selection.

Site Catalog

pegasus.catalog.site

System: Site Catalog

Since: 2.0

Type: enumeration

Value[0]: XML3

Value[1]: XML

Default: XML3

The site catalog file is available in three major flavors: The Text and and XML formats for the site catalog are
deprecated. Users can use pegasus-sc-converter client to convert their site catalog to the newer XML3 format.

1. THIS FORMAT IS DEPRECATED. WILL BE REMOVED IN COMING VERSIONS. USE pegasus-sc-converter
to convert XML format to XML3 Format. The "XML" format is an XML-based file. The XML format reads site
catalog conforming to the old site catalog schema available at http://pegasus.isi.edu/wms/docs/schemas/sc-2.0/
sc-2.0.xsd

12

2. The "XML3" format is an XML-based file. The XML format reads site catalog conforming to the old site catalog
schema available at http://pegasus.isi.edu/wms/docs/schemas/sc-3.0/sc-3.0.xsd

pegasus.catalog.site.file

System: Site Catalog

Since: 2.0

Type: file location string

Default: ${pegasus.home.sysconfdir}/sites.xml3 |
${pegasus.home.sysconfdir}/sites.xml

See also: pegasus.catalog.site

Running things on the grid requires an extensive description of the capabilities of each compute cluster, commonly
termed "site". This property describes the location of the file that contains such a site description. As the format is
currently in flow, please refer to the userguide and Pegasus for details which format is expected. The default value
is dependant on the value specified for the property pegasus.catalog.site . If type of SiteCatalog used is XML3, then
sites.xml3 is picked up from sysconfdir else sites.xml

Transformation Catalog

pegasus.catalog.transformation

System: Transformation Catalog

Since: 2.0

Type: enumeration

Value[0]: Text

Value[1]: File

Default: Text

See also: pegasus.catalog.transformation.file

Text In this mode, a multiline file based format is understood. The file is read and cached in memory. Any
modifications, as adding or deleting, causes an update of the memory and hence to the file underneath. All
queries are done against the memory representation.

The file sample.tc.text in the etc directory contains an example

Here is a sample textual format for transfomation catalog containing one transformation on two sites

tr example::keg:1.0 {
#specify profiles that apply for all the sites for the transformation
#in each site entry the profile can be overriden
profile env "APP_HOME" "/tmp/karan"
profile env "JAVA_HOME" "/bin/app"
site isi {
profile env "me" "with"
profile condor "more" "test"
profile env "JAVA_HOME" "/bin/java.1.6"
pfn "/path/to/keg"
arch "x86"
os "linux"
osrelease "fc"
osversion "4"
type "INSTALLED"
site wind {
profile env "me" "with"
profile condor "more" "test"

13

pfn "/path/to/keg"
arch "x86"
os "linux"
osrelease "fc"
osversion "4"
type "STAGEABLE"

File THIS FORMAT IS DEPRECATED. WILL BE REMOVED IN COMING VERSIONS. USE pegasus-tc-
converter to convert File format to Text Format. In this mode, a file format is understood. The file is read
and cached in memory. Any modifications, as adding or deleting, causes an update of the memory and hence
to the file underneath. All queries are done against the memory representation. The new TC file format uses
6 columns:

1. The resource ID is represented in the first column.

2. The logical transformation uses the colonized format ns::name:vs.

3. The path to the application on the system

4. The installation type is identified by one of the following keywords - all upper case: INSTALLED,
STAGEABLE. If not specified, or NULL is used, the type defaults to INSTALLED.

5. The system is of the format ARCH::OS[:VER:GLIBC]. The following arch types are understood:
"INTEL32", "INTEL64", "SPARCV7", "SPARCV9". The following os types are understood: "LINUX",
"SUNOS", "AIX". If unset or NULL, defaults to INTEL32::LINUX.

6. Profiles are written in the format NS::KEY=VALUE,KEY2=VALUE;NS2::KEY3=VALUE3 Multiple
key-values for same namespace are seperated by a comma "," and multiple namespaces are seperated by a
semicolon ";". If any of your profile values contains a comma you must not use the namespace abbreviator.

pegasus.catalog.transformation.file

Systems: Transformation Catalog

Type: file location string

Default: ${pegasus.home.sysconfdir}/tc.text |
${pegasus.home.sysconfdir}/tc.data

See also: pegasus.catalog.transformation

This property is used to set the path to the textual transformation catalogs of type File or Text. If the transformation
catalog is of type Text then tc.text file is picked up from sysconfdir, else tc.data

Provenance Catalog

pegasus.catalog.provenance

System: Provenance Tracking Catalog (PTC)

Since: 2.0

Type: Java class name

Value[0]: InvocationSchema

Value[1]: NXDInvSchema

Default: (no default)

See also: pegasus.catalog.*.db.driver

This property denotes the schema that is being used to access a PTC. The PTC is usually not a standard installation.
If you use a database backend, you most likely have a schema that supports PTCs. By default, no PTC will be used.

14

Currently only the InvocationSchema is available for storing the provenance tracking records. Beware, this can become
a lot of data. The values are names of Java classes. If no absolute Java classname is given, "org.griphyn.vdl.dbschema."
is prepended. Thus, by deriving from the DatabaseSchema API, and implementing the PTC interface, users can provide
their own classes here.

Alternatively, if you use a native XML database like eXist, you can store data using the NXDInvSchema. This will
avoid using any of the other database driver properties.

pegasus.catalog.provenance.refinement

System: PASOA Provenance Store

Since: 2.0.1

Type: Java class name

Value[0]: Pasoa

Value[1]: InMemory

Default: InMemory

See also: pegasus.catalog.*.db.driver

This property turns on the logging of the refinement process that happens inside Pegasus to the PASOA store. Not all
actions are currently captured. It is still an experimental feature.

The PASOA store needs to run on localhost on port 8080 https://localhost:8080/prserv-1.0

Replica Selection Properties

pegasus.selector.replica

System: Replica Selection

Since: 2.0

Type: URI string

Default: default

See also: pegasus.replica.*.ignore.stagein.sites

See also: pegasus.replica.*.prefer.stagein.sites

Each job in the DAX maybe associated with input LFN's denoting the files that are required for the job to run. To
determine the physical replica (PFN) for a LFN, Pegasus queries the replica catalog to get all the PFN's (replicas)
associated with a LFN. Pegasus then calls out to a replica selector to select a replica amongst the various replicas
returned. This property determines the replica selector to use for selecting the replicas.

Default If a PFN that is a file URL (starting with file:///) and has a pool attribute matching to the site handle
of the site where the compute is to be run is found, then that is returned. Else,a random PFN is
selected amongst all the PFN's that have a pool attribute matching to the site handle of the site where
a compute job is to be run. Else, a random pfn is selected amongst all the PFN's.

Restricted This replica selector, allows the user to specify good sites and bad sites for staging in data to a
particular compute site. A good site for a compute site X, is a preferred site from which replicas
should be staged to site X. If there are more than one good sites having a particular replica, then a
random site is selected amongst these preferred sites.

A bad site for a compute site X, is a site from which replica's should not be staged. The reason
of not accessing replica from a bad site can vary from the link being down, to the user not having
permissions on that site's data.

15

The good | bad sites are specified by the properties

pegasus.replica.*.prefer.stagein.sites
pegasus.replica.*.ignore.stagein.sites

where the * in the property name denotes the name of the compute site. A * in the property key is
taken to mean all sites.

The pegasus.replica.*.prefer.stagein.sites property takes precedence over
pegasus.replica.*.ignore.stagein.sites property i.e. if for a site X, a site Y is specified both in the
ignored and the preferred set, then site Y is taken to mean as only a preferred site for a site X.

Regex This replica selector allows the user allows the user to specific regex expressions that can be used
to rank various PFN's returned from the Replica Catalog for a particular LFN. This replica selector
selects the highest ranked PFN i.e the replica with the lowest rank value.

The regular expressions are assigned different rank, that determine the order in which the expressions
are employed. The rank values for the regex can expressed in user properties using the property.

pegasus.selector.replica.regex.rank.[value] regex-expression

The value is an integer value that denotes the rank of an expression with a rank value of 1 being
the highest rank.

Please note that before applying any regular expressions on the PFN's, the file URL's that dont match
the preferred site are explicitly filtered out.

Local This replica selector prefers replicas from the local host and that start with a file: URL scheme. It
is useful, when users want to stagin files to a remote site from your submit host using the Condor
file transfer mechanism.

pegasus.selector.replica.*.ignore.stagein.sites

System: Replica Selection

Type: comma separated list of sites

Since: 2.0

Default: no default

See also: pegasus.selector.replica

See also: pegasus.selector.replica.*.prefer.stagein.sites

A comma separated list of storage sites from which to never stage in data to a compute site. The property can apply
to all or a single compute site, depending on how the * in the property name is expanded.

The * in the property name means all compute sites unless replaced by a site name.

For e.g setting pegasus.selector.replica.*.ignore.stagein.sites to usc means that ignore all replicas from site usc for
staging in to any compute site. Setting pegasus.replica.isi.ignore.stagein.sites to usc means that ignore all replicas
from site usc for staging in data to site isi.

pegasus.selector.replica.*.prefer.stagein.sites

System: Replica Selection

Type: comma separated list of sites

Since: 2.0

Default: no default

16

See also: pegasus.selector.replica

See also: pegasus.selector.replica.*.ignore.stagein.sites

A comma separated list of preferred storage sites from which to stage in data to a compute site. The property can apply
to all or a single compute site, depending on how the * in the property name is expanded.

The * in the property name means all compute sites unless replaced by a site name.

For e.g setting pegasus.selector.replica.*.prefer.stagein.sites to usc means that prefer all replicas from site usc for
staging in to any compute site. Setting pegasus.replica.isi.prefer.stagein.sites to usc means that prefer all replicas from
site usc for staging in data to site isi.

pegasus.selector.replica.regex.rank.[value]

System: Replica Selection

Type: Regex Expression

Since: 2.3.0

Default: no default

See also: pegasus.selector.replica

Specifies the regex expressions to be applied on the PFNs returned for a particular LFN. Refer to

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

on information of how to construct a regex expression.

The [value] in the property key is to be replaced by an int value that designates the rank value for the regex expression
to be applied in the Regex replica selector.

The example below indicates preference for file URL's over URL's referring to gridftp server at example.isi.edu

pegasus.selector.replica.regex.rank.1 file://.*
pegasus.selector.replica.regex.rank.2 gsiftp://example\.isi\.edu.*

Site Selection Properties

pegasus.selector.site

System: Pegasus

Since: 2.0

Type: enumeration

Value[0]: Random

Value[1]: RoundRobin

Value[2]: NonJavaCallout

Value[3]: Group

Value[4]: Heft

Default: Random

See also: pegasus.selector.site.path

See also: pegasus.selector.site.timeout

See also: pegasus.selector.site.keep.tmp

17

See also: pegasus.selector.site.env.*

The site selection in Pegasus can be on basis of any of the following strategies.

Random In this mode, the jobs will be randomly distributed among the sites that can execute them.

RoundRobin In this mode. the jobs will be assigned in a round robin manner amongst the sites that can
execute them. Since each site cannot execute everytype of job, the round robin scheduling is
done per level on a sorted list. The sorting is on the basis of the number of jobs a particular
site has been assigned in that level so far. If a job cannot be run on the first site in the queue
(due to no matching entry in the transformation catalog for the transformation referred to by
the job), it goes to the next one and so on. This implementation defaults to classic round robin
in the case where all the jobs in the workflow can run on all the sites.

NonJavaCallout In this mode, Pegasus will callout to an external site selector.In this mode a temporary
file is prepared containing the job information that is passed to the site selector as an
argument while invoking it. The path to the site selector is specified by setting the property
pegasus.site.selector.path. The environment variables that need to be set to run the site selector
can be specified using the properties with a pegasus.site.selector.env. prefix. The temporary
file contains information about the job that needs to be scheduled. It contains key value pairs
with each key value pair being on a new line and separated by a =.

The following pairs are currently generated for the site selector temporary file that is generated
in the NonJavaCallout.

version is the version of the site selector
api,currently 2.0.

transformation is the fully-qualified definition
identifier for the transformation (TR)
namespace::name:version.

derivation is teh fully qualified definition
identifier for the derivation (DV),
namespace::name:version.

job.level is the job's depth in the tree of the workflow
DAG.

job.id is the job's ID, as used in the DAX file.

resource.id is a pool handle, followed by whitespace,
followed by a gridftp server. Typically, each
gridftp server is enumerated once, so you
may have multiple occurances of the same
site. There can be multiple occurances of this
key.

input.lfn is an input LFN, optionally followed by
a whitespace and file size. There can be
multiple occurances of this key,one for each
input LFN required by the job.

wf.name label of the dax, as found in the DAX's root
element. wf.index is the DAX index, that
is incremented for each partition in case of
deferred planning.

wf.time is the mtime of the workflow.

wf.manager is the name of the workflow manager being
used .e.g condor

vo.name is the name of the virtual organization that is
running this workflow. It is currently set to
NONE

18

vo.group unused at present and is set to NONE.

Group In this mode, a group of jobs will be assigned to the same site that can execute them. The use
of the PEGASUS profile key group in the dax, associates a job with a particular group. The
jobs that do not have the profile key associated with them, will be put in the default group. The
jobs in the default group are handed over to the "Random" Site Selector for scheduling.

Heft In this mode, a version of the HEFT processor scheduling algorithm is used to schedule jobs in
the workflow to multiple grid sites. The implementation assumes default data communication
costs when jobs are not scheduled on to the same site. Later on this may be made more
configurable.

The runtime for the jobs is specified in the transformation catalog by associating the pegasus
profile key runtime with the entries.

The number of processors in a site is picked up from the attribute idle-nodes associated with
the vanilla jobmanager of the site in the site catalog.

pegasus.selector.site.path

System: Site Selector

Since: 2.0

Type: String

If one calls out to an external site selector using the NonJavaCallout mode, this refers to the path where the site selector
is installed. In case other strategies are used it does not need to be set.

pegasus.site.selector.env.*

System: Pegasus

Since: 1.2.3

Type: String

The environment variables that need to be set while callout to the site selector. These are the variables that the user
would set if running the site selector on the command line. The name of the environment variable is got by stripping
the keys of the prefix "pegasus.site.selector.env." prefix from them. The value of the environment variable is the value
of the property.

e.g pegasus.site.selector.path.LD_LIBRARY_PATH /globus/lib would lead to the site selector being called with the
LD_LIBRARY_PATH set to /globus/lib.

pegasus.selector.site.timeout

System: Site Selector

Since: 2.0

Type: non negative integer

Default: 60

It sets the number of seconds Pegasus waits to hear back from an external site selector using the NonJavaCallout
interface before timing out.

pegasus.selector.site.keep.tmp

System: Pegasus

19

Since: 2.0

Type: enumeration

Value[0]: onerror

Value[1]: always

Value[2]: never

Default: onerror

It determines whether Pegasus deletes the temporary input files that are generated in the temp directory or not. These
temporary input files are passed as input to the external site selectors.

A temporary input file is created for each that needs to be scheduled.

Data Staging Configuration

pegasus.data.configuration

System: Pegasus

Since: 3.1

Type: enumeration

Value[0]: sharedfs

Value[1]: nonsharedfs

Value[2]: condorio

Default: sharedfs

This property sets up Pegasus to run in different environments.

sharedfs If this is set, Pegasus will be setup to execute jobs on the shared filesystem on the execution site.
This assumes, that the head node of a cluster and the worker nodes share a filesystem. The staging
site in this case is the same as the execution site. Pegasus adds a create dir job to the executable
workflow that creates a workflow specific directory on the shared filesystem . The data transfer
jobs in the executable workflow (stage_in_ , stage_inter_ , stage_out_) transfer the data to this
directory.The compute jobs in the executable workflow are launched in the directory on the shared
filesystem. Internally, if this is set the following properties are set.

pegasus.execute.*.filesystem.local false

condorio If this is set, Pegasus will be setup to run jobs in a pure condor pool, with the nodes not sharing
a filesystem. Data is staged to the compute nodes from the submit host using Condor File IO.
The planner is automatically setup to use the submit host (site local) as the staging site. All the
auxillary jobs added by the planner to the executable workflow (create dir, data stagein and stage-
out, cleanup) jobs refer to the workflow specific directory on the local site. The data transfer
jobs in the executable workflow (stage_in_ , stage_inter_ , stage_out_) transfer the data to this
directory. When the compute jobs start, the input data for each job is shipped from the workflow
specific directory on the submit host to compute/worker node using Condor file IO. The output
data for each job is similarly shipped back to the submit host from the compute/worker node. This
setup is particularly helpful when running workflows in the cloud environment where setting up a
shared filesystem across the VM's may be tricky. On loading this property, internally the following
properies are set

pegasus.transfer.sls.*.impl Condor
pegasus.execute.*.filesystem.local true
pegasus.gridstart PegasusLite
pegasus.transfer.worker.package true

20

nonsharedfs If this is set, Pegasus will be setup to execute jobs on an execution site without relying on a shared
filesystem between the head node and the worker nodes. You can specify staging site (using --
staging-site option to pegasus-plan) to indicate the site to use as a central storage location for a
workflow. The staging site is independant of the execution sites on which a workflow executes.
All the auxillary jobs added by the planner to the executable workflow (create dir, data stagein
and stage-out, cleanup) jobs refer to the workflow specific directory on the staging site. The data
transfer jobs in the executable workflow (stage_in_ , stage_inter_ , stage_out_) transfer the data to
this directory. When the compute jobs start, the input data for each job is shipped from the workflow
specific directory on the submit host to compute/worker node using pegasus-transfer. The output
data for each job is similarly shipped back to the submit host from the compute/worker node. The
protocols supported are at this time SRM, GridFTP, iRods, S3. This setup is particularly helpful
when running workflows on OSG where most of the execution sites don't have enough data storage.
Only a few sites have large amounts of data storage exposed that can be used to place data during a
workflow run. This setup is also helpful when running workflows in the cloud environment where
setting up a shared filesystem across the VM's may be tricky. On loading this property, internally
the following properies are set

pegasus.execute.*.filesystem.local true
pegasus.gridstart PegasusLite
pegasus.transfer.worker.package true

Transfer Configuration Properties

pegasus.transfer.*.impl

System: Pegasus

Type: enumeration

Value[0]: Transfer

Value[1]: GUC

Default: Transfer

See also: pegasus.transfer.refiner

Since: 2.0

Each compute job usually has data products that are required to be staged in to the execution site, materialized data
products staged out to a final resting place, or staged to another job running at a different site. This property determines
the underlying grid transfer tool that is used to manage the transfers.

The * in the property name can be replaced to achieve finer grained control to dictate what type of transfer jobs need
to be managed with which grid transfer tool.

Usually,the arguments with which the client is invoked can be specified by

- the property pegasus.transfer.arguments
- associating the PEGASUS profile key transfer.arguments

The table below illustrates all the possible variations of the property.

Property Name Applies to

pegasus.transfer.stagein.impl the stage in transfer jobs

pegasus.transfer.stageout.impl the stage out transfer jobs

pegasus.transfer.inter.impl the inter pool transfer jobs

pegasus.transfer.setup.impl the setup transfer job

pegasus.transfer.*.impl apply to types of transfer jobs

21

Note: Since version 2.2.0 the worker package is staged automatically during staging of executables to the remote site.
This is achieved by adding a setup transfer job to the workflow. The setup transfer job by default uses GUC to stage
the data. The implementation to use can be configured by setting the property

pegasus.transfer.setup.impl

property. However, if you have pegasus.transfer.*.impl set in your properties file, then you need to set
pegasus.transfer.setup.impl to GUC

The various grid transfer tools that can be used to manage data transfers are explained below

Transfer This results in pegasus-transfer to be used for transferring of files. It is a python based wrapper around
various transfer clients like globus-url-copy, lcg-copy, wget, cp, ln . pegasus-transfer looks at source
and destination url and figures out automatically which underlying client to use. pegasus-transfer is
distributed with the PEGASUS and can be found at $PEGASUS_HOME/bin/pegasus-transfer.

For remote sites, Pegasus constructs the default path to pegasus-transfer on the basis of
PEGASUS_HOME env profile specified in the site catalog. To specify a different path to the pegasus-
transfer client , users can add an entry into the transformation catalog with fully qualified logical name
as pegasus::pegasus-transfer

GUC This refers to the new guc client that does multiple file transfers per invocation. The globus-url-copy
client distributed with Globus 4.x is compatible with this mode.

pegasus.transfer.refiner

System: Pegasus

Type: enumeration

Value[0]: Bundle

Value[1]: Chain

Value[2]: Condor

Value[3]: Cluster

Default: Bundle

Since: 2.0

See also: pegasus.transfer.*.impl

This property determines how the transfer nodes are added to the workflow. The various refiners differ in the how
they link the various transfer jobs, and the number of transfer jobs that are created per compute jobs.

Bundle This is default refinement strategy in Pegasus. In this refinement strategy, the number of stage in transfer
nodes that are constructed per execution site can vary. The number of transfer nodes can be specified, by
associating the pegasus profile "bundle.stagein". The profile can either be associated with the execution
site in the site catalog or with the "transfer" executable in the transformation catalog. The value in the
transformation catalog overrides the one in the site catalog. This refinement strategy extends from the
Default refiner, and thus takes care of file clobbering while staging in data.

Chain In this refinement strategy, chains of stagein transfer nodes are constructed. A chain means that the jobs
are sequentially dependant upon each other i.e. at any moment, only one stage in transfer job will run
per chain. The number of chains can be specified by associating the pegasus profile "chain.stagein". The
profile can either be associated with the execution site in the site catalog or with the "transfer" executable
in the transformation catalog. The value in the transformation catalog overrides the one in the site catalog.
This refinement strategy extends from the Default refiner, and thus takes care of file clobbering while
staging in data.

Condor In this refinement strategy, no additional staging transfer jobs are added to the workflow. Instead the
compute jobs are modified to have the transfer_input_files and transfer_output_files set to pull the input
data. To stage-out the data a separate stage-out is added. The stage-out job is a /bin/true job that uses the

22

transfer_input_file and transfer_output_files to stage the data back to the submit host. This refinement
strategy is used workflows are being executed on a Condor pool, and the submit node itself is a part of
the Condor pool.

Cluster In this refinement strategy, clusters of stage-in and stageout jobs are created per level of the workflow.
It builds upon the Bundle refiner. The differences between the Bundle and Cluster refiner are as follows.

- stagein is also clustered/bundled per level. In Bundle it was
for the whole workflow.
- keys that control the clustering (old name bundling are)
cluster.stagein and cluster.stageout

This refinement strategy also adds dependencies between the stagein transfer jobs on different levels of
the workflow to ensure that stagein for the top level happens first and so on.

An image of the workflow with this refinement strategy can be found at

http://vtcpc.isi.edu/pegasus/index.php/ChangeLog#Added_a_Cluster_Transfer_Refiner

pegasus.transfer.sls.*.impl

System: Pegasus

Type: enumeration

Value[0]: Transfer

Value[1]: Condor

Default: Transfer

Since: 2.2.0

See also: pegasus.data.configuration

See also: pegasus.execute.*.filesystem.local

This property specifies the transfer tool to be used for Second Level Staging (SLS) of input and output data between
the head node and worker node filesystems.

Currently, the * in the property name CANNOT be replaced to achieve finer grained control to dictate what type of
SLS transfers need to be managed with which grid transfer tool.

The various grid transfer tools that can be used to manage SLS data transfers are explained below

Transfer This results in pegasus-transfer to be used for transferring of files. It is a python based wrapper around
various transfer clients like globus-url-copy, lcg-copy, wget, cp, ln . pegasus-transfer looks at source
and destination url and figures out automatically which underlying client to use. pegasus-transfer is
distributed with the PEGASUS and can be found at $PEGASUS_HOME/bin/pegasus-transfer.

For remote sites, Pegasus constructs the default path to pegasus-transfer on the basis of
PEGASUS_HOME env profile specified in the site catalog. To specify a different path to the pegasus-
transfer client , users can add an entry into the transformation catalog with fully qualified logical name
as pegasus::pegasus-transfer

Condor This results in Condor file transfer mechanism to be used to transfer the input data files from the submit
host directly to the worker node directories. This is used when running in pure Condor mode or in a
Condor pool that does not have a shared filesystem between the nodes.

When setting the SLS transfers to Condor make sure that the following properties are also set

pegasus.gridstart PegasusLite
pegasus.execute.*.filesystem.local true

Alternatively, you can set

23

pegasus.data.configuration condorio

in lieu of the above 3 properties.

Also make sure that pegasus.gridstart is not set.

Please refer to the section on "Condor Pool Without a Shared Filesystem" in the chapter on Planning
and Submitting.

pegasus.transfer.arguments

System: Pegasus

Since: 2.0

Type: String

Default: (no default)

See also: pegasus.transfer.sls.arguments

This determines the extra arguments with which the transfer implementation is invoked. The transfer executable that is
invoked is dependant upon the transfer mode that has been selected. The property can be overloaded by associated the
pegasus profile key transfer.arguments either with the site in the site catalog or the corresponding transfer executable
in the transformation catalog.

pegasus.transfer.sls.arguments

System: Pegasus

Since: 2.4

Type: String

Default: (no default)

See also: pegasus.transfer.arguments

See also: pegasus.transfer.sls.*.impl

This determines the extra arguments with which the SLS transfer implementation is invoked. The transfer executable
that is invoked is dependant upon the SLS transfer implementation that has been selected.

pegasus.transfer.stage.sls.file

System: Pegasus

Since: 3.0

Type: Boolean

Default: (no default)

See also: pegasus.gridstart

See also: pegasus.execute.*.filesystem.local

For executing jobs on the local filesystem, Pegasus creates sls files for each compute jobs. These sls files list the files
that need to be staged to the worker node and the output files that need to be pushed out from the worker node after
completion of the job. By default, pegasus will stage these SLS files to the shared filesystem on the head node as part
of first level data stagein jobs. However, in the case where there is no shared filesystem between head nodes and the
worker nodes, the user can set this property to false. This will result in the sls files to be transferred using the Condor
File Transfer from the submit host.

24

pegasus.transfer.worker.package

System: Pegasus

Type: boolean

Default: false

Since: 3.0

See also: pegasus.data.configuration

By default, Pegasus relies on the worker package to be installed in a directory accessible to the worker nodes on the
remote sites . Pegasus uses the value of PEGASUS_HOME environment profile in the site catalog for the remote sites,
to then construct paths to pegasus auxillary executables like kickstart, pegasus-transfer, seqexec etc.

If the Pegasus worker package is not installed on the remote sites users can set this property to true to get Pegasus
to deploy worker package on the nodes.

In the case of sharedfs setup, the worker package is deployed on the shared scratch directory for the workflow , that
is accessible to all the compute nodes of the remote sites.

When running in nonsharefs environments, the worker package is first brought to the submit directory and then
transferred to the worker node filesystem using Condor file IO.

pegasus.transfer.links

System: Pegasus

Type: boolean

Default: false

Since: 2.0

See also: pegasus.transfer

See also: pegasus.transfer.force

If this is set, and the transfer implementation is set to Transfer i.e. using the transfer executable distributed with the
PEGASUS. On setting this property, if Pegasus while fetching data from the Replica Catalog sees a pool attribute
associated with the PFN that matches the execution pool on which the data has to be transferred to, Pegasus instead
of the URL returned by the Replica Catalog replaces it with a file based URL. This is based on the assumption that
the if the pools match the filesystems are visible to the remote execution directory where input data resides. On seeing
both the source and destination urls as file based URLs the transfer executable spawns a job that creates a symbolic
link by calling ln -s on the remote pool.

pegasus.transfer.*.remote.sites

System: Pegasus

Type: comma separated list of sites

Default: no default

Since: 2.0

By default Pegasus looks at the source and destination URL's for to determine whether the associated transfer job runs
on the submit host or the head node of a remote site, with preference set to run a transfer job to run on submit host.

Pegasus will run transfer jobs on the remote sites

- if the file server for the compute site is a file server i.e url prefix file://
- symlink jobs need to be added that require the symlink transfer jobs to
be run remotely.

25

This property can be used to change the default behaviour of Pegasus and force pegasus to run different types of
transfer jobs for the sites specified on the remote site.

The table below illustrates all the possible variations of the property.

Property Name Applies to

pegasus.transfer.stagein.remote.sites the stage in transfer jobs

pegasus.transfer.stageout.remote.sites the stage out transfer jobs

pegasus.transfer.inter.remote.sites the inter pool transfer jobs

pegasus.transfer.*.remote.sites apply to types of transfer jobs

In addition * can be specified as a property value, to designate that it applies to all sites.

pegasus.transfer.staging.delimiter

System: Pegasus

Since: 2.0

Type: String

Default: :

See also: pegasus.transformation.selector

Pegasus supports executable staging as part of the workflow. Currently staging of statically linked executables is
supported only. An executable is normally staged to the work directory for the workflow/partition on the remote site.
The basename of the staged executable is derived from the namespace,name and version of the transformation in the
transformation catalog. This property sets the delimiter that is used for the construction of the name of the staged
executable.

pegasus.transfer.disable.chmod.sites

System: Pegasus

Since: 2.0

Type: comma separated list of sites

Default: no default

During staging of executables to remote sites, chmod jobs are added to the workflow. These jobs run on the remote
sites and do a chmod on the staged executable. For some sites, this maynot be required. The permissions might be
preserved, or there maybe an automatic mechanism that does it.

This property allows you to specify the list of sites, where you do not want the chmod jobs to be executed. For those
sites, the chmod jobs are replaced by NoOP jobs. The NoOP jobs are executed by Condor, and instead will immediately
have a terminate event written to the job log file and removed from the queue.

pegasus.transfer.setup.source.base.url

System: Pegasus

Type: URL

Default: no default

Since: 2.3

This property specifies the base URL to the directory containing the Pegasus worker package builds. During Staging
of Executable, the Pegasus Worker Package is also staged to the remote site. The worker packages are by default

26

pulled from the http server at pegasus.isi.edu. This property can be used to override the location from where the worker
package are staged. This maybe required if the remote computes sites don't allows files transfers from a http server.

Gridstart And Exitcode Properties

pegasus.gridstart

System: Pegasus

Since: 2.0

Type: enumeration

Value[0]: Kickstart

Value[1]: None

Value[2]: PegasusLite

Default: Kickstart

See also: pegasus.execute.*.filesystem.local

Jobs that are launched on the grid maybe wrapped in a wrapper executable/script that enables information about about
the execution, resource consumption, and - most importantly - the exitcode of the remote application. At present, a
job scheduled on a remote site is launched with a gridstart if site catalog has the corresponding gridlaunch attribute
set and the job being launched is not MPI.

Users can explicitly decide what gridstart to use for a job, by associating the pegasus profile key named gridstart
with the job.

Kickstart In this mode, all the jobs are lauched via kickstart. The kickstart executable is a light-weight
program which connects the stdin,stdout and stderr filehandles for PEGASUS jobs on the remote
site. Kickstart is an executable distributed with PEGASUS that can generally be found at
${pegasus.home.bin}/kickstart.

None In this mode, all the jobs are launched directly on the remote site. Each job's stdin,stdout and stderr
are connected to condor commands in a manner to ensure that they are sent back to the submit host.

PegasusLite In this mode, the compute jobs are wrapped by PegasusLite instances. PegasusLite instance is a
bash script, that is launced on the compute node. It determins at runtime the directory a job needs
to execute in, pulls in data from the staging site , launches the job, pushes out the data and cleans
up the directory after execution.

pegasus.gridstart.kickstart.set.xbit

System: Pegasus

Since: 2.4

Type: Boolean

Default: false

See also: pegasus.transfer.disable.chmod.sites

Kickstart has an option to set the X bit on an executable before it launches it on the remote site. In case of staging of
executables, by default chmod jobs are launched that set the x bit of the user executables staged to a remote site.

On setting this property to true, kickstart gridstart module adds a -X option to kickstart arguments. The -X arguments
tells kickstart to set the x bit of the executable before launching it.

User should usually disable the chmod jobs by setting the property pegasus.transfer.disable.chmod.sites , if they set
this property to true.

27

pegasus.gridstart.kickstart.stat

System: Pegasus

Since: 2.1

Type: Boolean

Default: false

See also: pegasus.gridstart.generate.lof

Kickstart has an option to stat the input files and the output files. The stat information is collected in the XML record
generated by kickstart. Since stat is an expensive operation, it is not turned on by on. Set this property to true if you
want to see stat information for the input files and output files of a job in it's kickstart output.

pegasus.gridstart.generate.lof

System: Pegasus

Since: 2.1

Type: Boolean

Default: false

See also: pegasus.gridstart.kickstart.stat

For the stat option for kickstart, we generate 2 lof (list of filenames) files for each job. One lof file containing the
input lfn's for the job, and the other containing output lfn's for the job. In some cases, it maybe beneficial to have
these lof files generated but not do the actual stat. This property allows you to generate the lof files without triggering
the stat in kickstart invocations.

pegasus.gridstart.invoke.always

System: Pegasus

Since: 2.0

Type: Boolean

Default: false

See also: pegasus.gridstart.invoke.length

Condor has a limit in it, that restricts the length of arguments to an executable to 4K. To get around this limit, you can
trigger Kickstart to be invoked with the -I option. In this case, an arguments file is prepared per job that is transferred
to the remote end via the Condor file transfer mechanism. This way the arguments to the executable are not specified
in the condor submit file for the job. This property specifies whether you want to use the invoke option always for all
jobs, or want it to be triggered only when the argument string is determined to be greater than a certain limit.

pegasus.gridstart.invoke.length

System: Pegasus

Since: 2.0

Type: Long

Default: 4000

See also: pegasus.gridstart.invoke.always

Gridstart is automatically invoked with the -I option, if it is determined that the length of the arguments to be specified
is going to be greater than a certain limit. By default this limit is set to 4K. However, it can overriden by specifying
this property.

28

Interface To Condor And Condor Dagman
The Condor DAGMan facility is usually activate using the condor_submit_dag command. However, many shapes of
workflows have the ability to either overburden the submit host, or overflow remote gatekeeper hosts. While DAGMan
provides throttles, unfortunately these can only be supplied on the command-line. Thus,PEGASUS provides a versatile
wrapper to invoke DAGMan, called pegasus-submit-dag. It can be configured from the command-line, from user- and
system properties, and by defaults.

pegasus.condor.logs.symlink

System: Condor

Type: Boolean

Default: true

Since: 3.0

By default pegasus has the Condor common log [dagname]-0.log in the submit file as a symlink to a location in /tmp .
This is to ensure that condor common log does not get written to a shared filesystem. If the user knows for sure that
the workflow submit directory is not on the shared filesystem, then they can opt to turn of the symlinking of condor
common log file by setting this property to false.

pegasus.condor.arguments.quote

System: Condor

Type: Boolean

Default: true

Since: 2.0

Old Name: pegasus.condor.arguments.quote

This property determines whether to apply the new Condor quoting rules for quoting the argument string. The new
argument quoting rules appeared in Condor 6.7.xx series. We have verified it for 6.7.19 version. If you are using an
old condor at the submit host, set this property to false.

pegasus.dagman.nofity

System: DAGman wrapper

Type: Case-insensitive enumeration

Value[0]: Complete

Value[1]: Error

Value[2]: Never

Default: Error

Document: http://www.cs.wisc.edu/condor/manual/v6.9/
condor_submit_dag.html

Document: http://www.cs.wisc.edu/condor/manual/v6.9/
condor_submit.html

The pegasus-submit-dag wrapper processes properties to set DAGMan commandline arguments. The argument sets
the e-mail notification for DAGMan itself. This information will be used within the Condor submit description file
for DAGMan. This file is produced by the the condor_submit_dag. See notification within the section of submit

29

description file commands in the condor_submit manual page for specification of value. Many users prefer the value
NEVER.

pegasus.dagman.verbose

System: DAGman wrapper

Type: Boolean

Value[0]: false

Value[1]: true

Default: false

Document: http://www.cs.wisc.edu/condor/manual/v6.9/
condor_submit_dag.html

The pegasus-submit-dag wrapper processes properties to set DAGMan commandline arguments. If set and true, the
argument activates verbose output in case of DAGMan errors.

pegasus.dagman.[category].maxjobs

System: DAGman wrapper

Type: Integer

Since: 2.2

Default: no default

Document: http://vtcpc.isi.edu/pegasus/index.php/ChangeLog
\#Support_for_DAGMan_node_categories

DAGMan now allows for the nodes in the DAG to be grouped in category. The tuning parameters like maxjobs then
can be applied per category instead of being applied to the whole workflow. To use this facility users need to associate
the dagman profile key named category with their jobs. The value of the key is the category to which the job belongs to.

You can then use this property to specify the value for a category. For the above example you will set
pegasus.dagman.short-running.maxjobs

Monitoring Properties

pegasus.monitord.events

System: Pegasus-monitord

Type: Boolean

Default: true

Since: 3.0.2

See Also: pegasus.monitord.output

This property determines whether pegasus-monitord generates log events. If log events are disabled using this property,
no bp file, or database will be created, even if the pegasus.monitord.output property is specified.

pegasus.monitord.output

System: Pegasus-monitord

Type: String

30

Since: 3.0.2

See Also: pegasus.monitord.events

This property specifies the destination for generated log events in pegasus-monitord. By default, events are stored in
a sqlite database in the workflow directory, which will be created with the workflow's name, and a ".stampede.db"
extension. Users can specify an alternative database by using a SQLAlchemy connection string. Details are available
at:

http://www.sqlalchemy.org/docs/05/reference/dialects/index.html

It is important to note that users will need to have the appropriate db interface library installed. Which is to say,
SQLAlchemy is a wrapper around the mysql interface library (for instance), it does not provide a MySQL driver itself.
The Pegasus distribution includes both SQLAlchemy and the SQLite Python driver. As a final note, it is important to
mention that unlike when using SQLite databases, using SQLAlchemy with other database servers, e.g. MySQL or
Postgres , the target database needs to exist. Users can also specify a file name using this property in order to create
a file with the log events.

Example values for the SQLAlchemy connection string for various end points are listed below

SQL Alchemy End Point Example Value

Netlogger BP File file:///submit/dir/myworkflow.bp

SQL Lite Database sqlite:///submit/dir/myworkflow.db

MySQL Database mysql://user:password@host:port/databasename

pegasus.monitord.notifications

System: Pegasus-monitord

Type: Boolean

Default: true

Since: 3.1

See Also: pegasus.monitord.notifications.max

See Also: pegasus.monitord.notifications.timeout

This property determines whether pegasus-monitord processes notifications. When notifications are enabled, pegasus-
monitord will parse the .notify file generated by pegasus-plan and will invoke notification scripts whenever conditions
matches one of the notifications.

pegasus.monitord.notifications.max

System: Pegasus-monitord

Type: Integer

Default: 10

Since: 3.1

See Also: pegasus.monitord.notifications

See Also: pegasus.monitord.notifications.timeout

This property determines how many notification scripts pegasus-monitord will call concurrently. Upon reaching this
limit, pegasus-monitord will wait for one notification script to finish before issuing another one. This is a way to
keep the number of processes under control at the submit host. Setting this property to 0 will disable notifications
completely.

31

pegasus.monitord.notifications.timeout

System: Pegasus-monitord

Type: Integer

Default: 0

Since: 3.1

See Also: pegasus.monitord.notifications

See Also: pegasus.monitord.notifications.max

This property determines how long will pegasus-monitord let notification scripts run before terminating them. When
this property is set to 0 (default), pegasus-monitord will not terminate any notification scripts, letting them run
indefinitely. If some notification scripts missbehave, this has the potential problem of starving pegasus-monitord's
notification slots (see the pegasus.monitord.notifications.max property), and block further notifications. In addition,
users should be aware that pegasus-monitord will not exit until all notification scripts are finished.

pegasus.monitord.stdout.disable.parsing

System: Pegasus-monitord

Type: Boolean

Default: False

Since: 3.1.1

By default, pegasus-monitord parses the stdout/stderr section of the kickstart to populate the applications captured
stdout and stderr in the job instance table for the stampede schema. For large workflows, this may slow down monitord
especially if the application is generating a lot of output to it's stdout and stderr. This property, can be used to turn
of the database population.

Job Clustering Properties

pegasus.clusterer.job.aggregator

System: Job Clustering

Since: 2.0

Type: String

Value[0]: seqexec

Value[1]: mpiexec

Default: seqexec

A large number of workflows executed through the Virtual Data System, are composed of several jobs that run for
only a few seconds or so. The overhead of running any job on the grid is usually 60 seconds or more. Hence, it makes
sense to collapse small independent jobs into a larger job. This property determines, the executable that will be used
for running the larger job on the remote site.

seqexec In this mode, the executable used to run the merged job is seqexec that runs each of the smaller jobs
sequentially on the same node. The executable "seqexec" is a PEGASUS tool distributed in the PEGASUS
worker package, and can be usually found at {pegasus.home}/bin/seqexec.

mpiexec In this mode, the executable used to run the merged job is mpiexec that runs the smaller jobs via mpi on n
nodes where n is the nodecount associated with the merged job. The executable "mpiexec" is a PEGASUS
tool distributed in the PEGASUS worker package, and can be usually found at {pegasus.home}/bin/
mpiexec.

32

pegasus.clusterer.job.aggregator.seqexec.log

System: Job Clustering

Type: Boolean

Default: false

Since: 2.3

See also: pegasus.clusterer.job.aggregator

See also: pegasus.clusterer.job.aggregator.seqexec.log.global

Seqexec logs the progress of the jobs that are being run by it in a progress file on the remote cluster where it is executed.

This property sets the Boolean flag, that indicates whether to turn on the logging or not.

pegasus.clusterer.job.aggregator.seqexec.log.global

System: Job Clustering

Type: Boolean

Default: true

Since: 2.3

See also: pegasus.clusterer.job.aggregator

See also: pegasus.clusterer.job.aggregator.seqexec.log

Old Name: pegasus.clusterer.job.aggregator.seqexec.hasgloballog

Seqexec logs the progress of the jobs that are being run by it in a progress file on the remote cluster where it is
executed. The progress log is useful for you to track the progress of your computations and remote grid debugging.
The progress log file can be shared by multiple seqexec jobs that are running on a particular cluster as part of the
same workflow. Or it can be per job.

This property sets the Boolean flag, that indicates whether to have a single global log for all the seqexec jobs on a
particular cluster or progress log per job.

pegasus.clusterer.job.aggregator.seqexec.firstjobfail

System: Job Clustering

Type: Boolean

Default: true

Since: 2.2

See also: pegasus.clusterer.job.aggregator

By default seqexec does not stop execution even if one of the clustered jobs it is executing fails. This is because
seqexec tries to get as much work done as possible.

This property sets the Boolean flag, that indicates whether to make seqexec stop on the first job failure it detects.

pegasus.clusterer.label.key

System: Job Clustering

Type: String

Default: label

33

Since: 2.0

See also: pegasus.partitioner.label.key

While clustering jobs in the workflow into larger jobs, you can optionally label your graph to control which jobs are
clustered and to which clustered job they belong. This done using a label based clustering scheme and is done by
associating a profile/label key in the PEGASUS namespace with the jobs in the DAX. Each job that has the same
value/label value for this profile key, is put in the same clustered job.

This property allows you to specify the PEGASUS profile key that you want to use for label based clustering.

Logging Properties

pegasus.log.manager

System: Pegasus

Since: 2.2.0

Type: Enumeration

Value[0]: Default

Value[1]: Log4j

Default: Default

See also: pegasus.log.manager.formatter

This property sets the logging implementation to use for logging.

Default This implementation refers to the legacy Pegasus logger, that logs directly to stdout and stderr. It however,
does have the concept of levels similar to log4j or syslog.

Log4j This implementation, uses Log4j to log messages. The log4j properties can be specified in a properties
file, the location of which is specified by the property

pegasus.log.manager.log4j.conf

pegasus.log.manager.formatter

System: Pegasus

Since: 2.2.0

Type: Enumeration

Value[0]: Simple

Value[1]: Netlogger

Default: Simple

See also: pegasus.log.manager.formatter

This property sets the formatter to use for formatting the log messages while logging.

Simple This formats the messages in a simple format. The messages are logged as is with minimal formatting.
Below are sample log messages in this format while ranking a dax according to performance.

event.pegasus.ranking dax.id se18-gda.dax - STARTED
event.pegasus.parsing.dax dax.id se18-gda-nested.dax - STARTED
event.pegasus.parsing.dax dax.id se18-gda-nested.dax - FINISHED
job.id jobGDA
job.id jobGDA query.name getpredicted performace time 10.00

34

event.pegasus.ranking dax.id se18-gda.dax - FINISHED

Netlogger This formats the messages in the Netlogger format , that is based on key value pairs. The netlogger
format is useful for loading the logs into a database to do some meaningful analysis. Below are sample
log messages in this format while ranking a dax according to performance.

ts=2008-09-06T12:26:20.100502Z event=event.pegasus.ranking.start \
msgid=6bc49c1f-112e-4cdb-af54-3e0afb5d593c \
eventId=event.pegasus.ranking_8d7c0a3c-9271-4c9c-a0f2-1fb57c6394d5 \
dax.id=se18-gda.dax prog=Pegasus
ts=2008-09-06T12:26:20.100750Z event=event.pegasus.parsing.dax.start \
msgid=fed3ebdf-68e6-4711-8224-a16bb1ad2969 \
eventId=event.pegasus.parsing.dax_887134a8-39cb-40f1-b11c-b49def0c5232\
dax.id=se18-gda-nested.dax prog=Pegasus
ts=2008-09-06T12:26:20.100894Z event=event.pegasus.parsing.dax.end \
msgid=a81e92ba-27df-451f-bb2b-b60d232ed1ad \
eventId=event.pegasus.parsing.dax_887134a8-39cb-40f1-b11c-b49def0c5232
ts=2008-09-06T12:26:20.100395Z event=event.pegasus.ranking \
msgid=4dcecb68-74fe-4fd5-aa9e-ea1cee88727d \
eventId=event.pegasus.ranking_8d7c0a3c-9271-4c9c-a0f2-1fb57c6394d5 \
job.id="jobGDA"
ts=2008-09-06T12:26:20.100395Z event=event.pegasus.ranking \
msgid=4dcecb68-74fe-4fd5-aa9e-ea1cee88727d \
eventId=event.pegasus.ranking_8d7c0a3c-9271-4c9c-a0f2-1fb57c6394d5 \
job.id="jobGDA" query.name="getpredicted performace" time="10.00"
ts=2008-09-06T12:26:20.102003Z event=event.pegasus.ranking.end \
msgid=31f50f39-efe2-47fc-9f4c-07121280cd64 \
eventId=event.pegasus.ranking_8d7c0a3c-9271-4c9c-a0f2-1fb57c6394d5

pegasus.log.*

System: Pegasus

Since: 2.0

Type: String

Default: No default

This property sets the path to the file where all the logging for Pegasus can be redirected to. Both stdout and stderr
are logged to the file specified.

pegasus.log.metrics

System: Pegasus

Since: 2.1.0

Type: Boolean

Default: true

See also: pegasus.log.metrics.file

This property enables the logging of certain planning and workflow metrics to a global log file. By default the file to
which the metrics are logged is ${pegasus.home}/var/pegasus.log.

pegasus.log.metrics.file

System: Pegasus

Since: 2.1.0

Type: Boolean

Default: ${pegasus.home}/var/pegasus.log

See also: pegasus.log.metrics

35

This property determines the file to which the workflow and planning metrics are logged if enabled.

Miscellaneous Properties

pegasus.code.generator

System: Pegasus

Since: 3.0

Type: enumeration

Value[0]: Condor

Value[1]: Shell

Default: Condor

This property is used to load the appropriate Code Generator to use for writing out the executable workflow.

Condor This is the default code generator for Pegasus . This generator generates the executable workflow as a
Condor DAG file and associated job submit files. The Condor DAG file is passed as input to Condor
DAGMan for job execution.

Shell This Code Generator generates the executable workflow as a shell script that can be executed on the submit
host. While using this code generator, all the jobs should be mapped to site local i.e specify --sites local
to pegasus-plan.

pegasus.job.priority.assign

System: Pegasus

Since: 3.0.3

Type: Boolean

Default: true

This property can be used to turn of the default level based condor priorities that are assigned to jobs in the executable
workflow.

pegasus.file.cleanup.strategy

System: Pegasus

Since: 2.2

Type: enumeration

Value[0]: InPlace

Default: InPlace

This property is used to select the strategy of how the the cleanup nodes are added to the executable workflow.

InPlace This is the only mode available .

pegasus.file.cleanup.impl

System: Pegasus

Since: 2.2

36

Type: enumeration

Value[0]: Cleanup

Value[1]: RM

Value[2]: S3

Default: Cleanup

This property is used to select the executable that is used to create the working directory on the compute sites.

Cleanup The default executable that is used to delete files is the dirmanager executable shipped with Pegasus. It
is found at $PEGASUS_HOME/bin/dirmanager in the pegasus distribution. An entry for transformation
pegasus::dirmanager needs to exist in the Transformation Catalog or the PEGASUS_HOME environment
variable should be specified in the site catalog for the sites for this mode to work.

RM This mode results in the rm executable to be used to delete files from remote directories. The rm
executable is standard on *nix systems and is usually found at /bin/rm location.

S3 This mode is used to delete files/objects from the buckets in S3 instead of a directory. This should be set
when running workflows on Amazon EC2. This implementation relies on s3cmd command line client
to create the bucket. An entry for transformation amazon::s3cmd needs to exist in the Transformation
Catalog for this to work.

pegasus.file.cleanup.scope

System: Pegasus

Since: 2.3.0

Type: enumeration

Value[0]: fullahead

Value[1]: deferred

Default: fullahead

By default in case of deferred planning InPlace file cleanup is turned OFF. This is because the cleanup algorithm does
not work across partitions. This property can be used to turn on the cleanup in case of deferred planning.

fullahead This is the default scope. The pegasus cleanup algorithm does not work across partitions in deferred
planning. Hence the cleanup is always turned OFF , when deferred planning occurs and cleanup scope
is set to full ahead.

deferred If the scope is set to deferred, then Pegasus will not disable file cleanup in case of deferred planning.
This is useful for scenarios where the partitions themselves are independant (i.e. dont share files).
Even if the scope is set to deferred, users can turn off cleanup by specifying --nocleanup option to
pegasus-plan.

pegasus.catalog.transformation.mapper

System: Staging of Executables

Since: 2.0

Type: enumeration

Value[0]: All

Value[1]: Installed

Value[2]: Staged

Value[3]: Submit

Default: All

37

See also: pegasus.transformation.selector

Pegasus now supports transfer of statically linked executables as part of the concrete workflow. At present, there
is only support for staging of executables referred to by the compute jobs specified in the DAX file. Pegasus
determines the source locations of the binaries from the transformation catalog, where it searches for entries of type
STATIC_BINARY for a particular architecture type. The PFN for these entries should refer to a globus-url-copy valid
and accessible remote URL. For transfer of executables, Pegasus constructs a soft state map that resides on top of
the transformation catalog, that helps in determining the locations from where an executable can be staged to the
remote site.

This property determines, how that map is created.

All In this mode, all sources with entries of type STATIC_BINARY for a particular transformation are
considered valid sources for the transfer of executables. This the most general mode, and results in
the constructing the map as a result of the cartesian product of the matches.

Installed In this mode, only entries that are of type INSTALLED are used while constructing the soft state map.
This results in Pegasus never doing any transfer of executables as part of the workflow. It always
prefers the installed executables at the remote sites.

Staged In this mode, only entries that are of type STATIC_BINARY are used while constructing the soft state
map. This results in the concrete workflow referring only to the staged executables, irrespective of the
fact that the executables are already installed at the remote end.

Submit In this mode, only entries that are of type STATIC_BINARY and reside at the submit host (pool local),
are used while constructing the soft state map. This is especially helpful, when the user wants to use
the latest compute code for his computations on the grid and that relies on his submit host.

pegasus.selector.transformation

System: Staging of Executables

Since: 2.0

Type: enumeration

Value[0]: Random

Value[1]: Installed

Value[2]: Staged

Value[3]: Submit

Default: Random

See also: pegasus.catalog.transformation

In case of transfer of executables, Pegasus could have various transformations to select from when it schedules to run
a particular compute job at a remote site. For e.g it can have the choice of staging an executable from a particular
remote pool, from the local (submit host) only, use the one that is installed on the remote site only.

This property determines, how a transformation amongst the various candidate transformations is selected, and
is applied after the property pegasus.tc has been applied. For e.g specifying pegasus.tc as Staged and then
pegasus.transformation.selector as INSTALLED does not work, as by the time this property is applied, the soft state
map only has entries of type STAGED.

Random In this mode, a random matching candidate transformation is selected to be staged to the remote
execution pool.

Installed In this mode, only entries that are of type INSTALLED are selected. This means that the concrete
workflow only refers to the transformations already pre installed on the remote pools.

Staged In this mode, only entries that are of type STATIC_BINARY are selected, ignoring the ones that are
installed at the remote site.

38

Submit In this mode, only entries that are of type STATIC_BINARY and reside at the submit host (pool local),
are selected as sources for staging the executables to the remote execution pools.

pegasus.execute.*.filesystem.local

System: Pegasus

Type: Boolean

Default: false

Since: 2.1.0

See also: pegasus.data.configuration

Normally, Pegasus transfers the data to and from a directory on the shared filesystem on the head node of a compute
site. The directory needs to be visible to both the head node and the worker nodes for the compute jobs to execute
correctly.

By setting this property to true, you can get Pegasus to execute jobs on the worker node filesystem. In this case, when
the jobs are launched on the worker nodes, the jobs grab the input data from the workflow specific execution directory
on the compute site and push the output data to the same directory after completion. The transfer of data to and from
the worker node directory is referred to as Second Level Staging (SLS).

pegasus.parser.dax.preserver.linebreaks

System: Pegasus

Type: Boolean

Default: false

Since: 2.2.0

The DAX Parser normally does not preserve line breaks while parsing the CDATA section that appears in the
arguments section of the job element in the DAX. On setting this to true, the DAX Parser preserves any line line
breaks that appear in the CDATA section.

