
Pegasus 3.1.0 Basic Configuration

Pegasus 3.1.0 Basic Configuration

iii

Table of Contents
1. . 1

Basic Properties . 1
pegasus.home .. 1
Catalog Properties . 2
Data Staging Configuration . 5

1

Basic Properties

This is the reference guide to the basic properties regarding the Pegasus Workflow Planner, and their respective default
values. Please refer to the advanced properties guide to know about all the properties that a user can use to configure the
Pegasus Workflow Planner. Please note that the values rely on proper capitalization, unless explicitly noted otherwise.

Some properties rely with their default on the value of other properties. As a notation, the curly braces refer to the value
of the named property. For instance, ${pegasus.home} means that the value depends on the value of the pegasus.home
property plus any noted additions. You can use this notation to refer to other properties, though the extent of the
subsitutions are limited. Usually, you want to refer to a set of the standard system properties. Nesting is not allowed.
Substitutions will only be done once.

There is a priority to the order of reading and evaluating properties. Usually one does not need to worry about the
priorities. However, it is good to know the details of when which property applies, and how one property is able to
overwrite another. The following is a mutually exclusive list (highest priority first) of property file locations.

1. --conf option to the tools. Almost all of the clients that use properties have a --conf option to specify the property
file to pick up.

2. submit-dir/pegasus.xxxxxxx.properties file. All tools that work on the submit directory (i.e after pegasus has
planned a workflow) pick up the pegasus.xxxxx.properties file from the submit directory. The location for the
pegasus.xxxxxxx.propertiesis picked up from the braindump file.

3. The properties defined in the user property file ${user.home}/.pegasusrc have lowest priority.

Commandline properties have the highest priority. These override any property loaded from a property file. Each
commandline property is introduced by a -D argument. Note that these arguments are parsed by the shell wrapper, and
thus the -D arguments must be the first arguments to any command. Commandline properties are useful for debugging
purposes.

From Pegasus 3.1 release onwards, support has been dropped for the following properties that were used to signify
the location of the properties file

• pegasus.properties

• pegasus.user.properties

The following example provides a sensible set of properties to be set by the user property file. These properties use
mostly non-default settings. It is an example only, and will not work for you:

pegasus.catalog.replica File
pegasus.catalog.replica.file ${pegasus.home}/etc/sample.rc.data
pegasus.catalog.transformation Text
pegasus.catalog.transformation.file ${pegasus.home}/etc/sample.tc.text
pegasus.catalog.site XML3
pegasus.catalog.site.file ${pegasus.home}/etc/sample.sites.xml3

If you are in doubt which properties are actually visible, pegasus during the planning of the workflow dumps all
properties after reading and prioritizing in the submit directory in a file with the suffix properties.

pegasus.home
Systems: all

Type: directory location string

Default: "$PEGASUS_HOME"

The property pegasus.home cannot be set in the property file. This property is automatically set up by the pegasus
clients internally by determining the installation directory of pegasus. Knowledge about this property is important for
developers who want to invoke PEGASUS JAVA classes without the shell wrappers.

2

Catalog Properties

Replica Catalog

pegasus.catalog.replica

System: Pegasus

Since: 2.0

Type: enumeration

Value[0]: RLS

Value[1]: LRC

Value[2]: JDBCRC

Value[3]: File

Value[4]: MRC

Default: RLS

Pegasus queries a Replica Catalog to discover the physical filenames (PFN) for input files specified in the DAX.
Pegasus can interface with various types of Replica Catalogs. This property specifies which type of Replica Catalog
to use during the planning process.

RLS RLS (Replica Location Service) is a distributed replica catalog, which ships with GT4. There is an index
service called Replica Location Index (RLI) to which 1 or more Local Replica Catalog (LRC) report. Each
LRC can contain all or a subset of mappings. In this mode, Pegasus queries the central RLI to discover in
which LRC's the mappings for a LFN reside. It then queries the individual LRC's for the PFN's. To use
RLS, the user additionally needs to set the property pegasus.catalog.replica.url to specify the URL for the
RLI to query. Details about RLS can be found at http://www.globus.org/toolkit/data/rls/

LRC If the user does not want to query the RLI, but directly a single Local Replica Catalog. To use LRC, the
user additionally needs to set the property pegasus.catalog.replica.url to specify the URL for the LRC to
query. Details about RLS can be found at http://www.globus.org/toolkit/data/rls/

JDBCRC In this mode, Pegasus queries a SQL based replica catalog that is accessed via JDBC. The sql schema's
for this catalog can be found at $PEGASUS_HOME/sql directory. To use JDBCRC, the user additionally
needs to set the following properties

1. pegasus.catalog.replica.db.url

2. pegasus.catalog.replica.db.user

3. pegasus.catalog.replica.db.password

File In this mode, Pegasus queries a file based replica catalog. It is neither transactionally safe, nor advised
to use for production purposes in any way. Multiple concurrent access to the File will end up clobbering
the contents of the file. The site attribute should be specified whenever possible. The attribute key for the
site attribute is "pool".

The LFN may or may not be quoted. If it contains linear whitespace, quotes, backslash or an equality sign,
it must be quoted and escaped. Ditto for the PFN. The attribute key-value pairs are separated by an equality
sign without any whitespaces. The value may be in quoted. The LFN sentiments about quoting apply.

LFN PFN
LFN PFN a=b [..]
LFN PFN a="b" [..]
"LFN w/LWS" "PFN w/LWS" [..]

3

To use File, the user additionally needs to specify pegasus.catalog.replica.file property to specify the path
to the file based RC.

MRC In this mode, Pegasus queries multiple replica catalogs to discover the file locations on the grid. To use it set

pegasus.catalog.replica MRC

Each associated replica catalog can be configured via properties as follows.

The user associates a variable name referred to as [value] for each of the catalogs, where [value] is any
legal identifier (concretely [A-Za-z][_A-Za-z0-9]*) For each associated replica catalogs the user specifies
the following properties.

pegasus.catalog.replica.mrc.[value] specifies the type of replica catalog.
pegasus.catalog.replica.mrc.[value].key specifies a property name key for a
particular catalog

For example, if a user wants to query two lrc's at the same time he/she can specify as follows

pegasus.catalog.replica.mrc.lrc1 LRC
pegasus.catalog.replica.mrc.lrc2.url rls://sukhna
pegasus.catalog.replica.mrc.lrc2 LRC
pegasus.catalog.replica.mrc.lrc2.url rls://smarty

In the above example, lrc1, lrc2 are any valid identifier names and url is the property key that needed to
be specified.

pegasus.catalog.replica.url

System: Pegasus

Since: 2.0

Type: URI string

Default: (no default)

When using the modern RLS replica catalog, the URI to the Replica catalog must be provided to Pegasus to enable
it to look up filenames. There is no default.

Site Catalog

pegasus.catalog.site

System: Site Catalog

Since: 2.0

Type: enumeration

Value[0]: XML3

Value[1]: XML

Default: XML3

The site catalog file is available in three major flavors: The Text and and XML formats for the site catalog are
deprecated. Users can use pegasus-sc-converter client to convert their site catalog to the newer XML3 format.

1. THIS FORMAT IS DEPRECATED. WILL BE REMOVED IN COMING VERSIONS. USE pegasus-sc-converter
to convert XML format to XML3 Format. The "XML" format is an XML-based file. The XML format reads site

4

catalog conforming to the old site catalog schema available at http://pegasus.isi.edu/wms/docs/schemas/sc-2.0/
sc-2.0.xsd

2. The "XML3" format is an XML-based file. The XML format reads site catalog conforming to the old site catalog
schema available at http://pegasus.isi.edu/wms/docs/schemas/sc-3.0/sc-3.0.xsd

pegasus.catalog.site.file

System: Site Catalog

Since: 2.0

Type: file location string

Default: ${pegasus.home.sysconfdir}/sites.xml3 |
${pegasus.home.sysconfdir}/sites.xml

See also: pegasus.catalog.site

Running things on the grid requires an extensive description of the capabilities of each compute cluster, commonly
termed "site". This property describes the location of the file that contains such a site description. As the format is
currently in flow, please refer to the userguide and Pegasus for details which format is expected. The default value
is dependant on the value specified for the property pegasus.catalog.site . If type of SiteCatalog used is XML3, then
sites.xml3 is picked up from sysconfdir else sites.xml

Transformation Catalog

pegasus.catalog.transformation

System: Transformation Catalog

Since: 2.0

Type: enumeration

Value[0]: Text

Value[1]: File

Default: Text

See also: pegasus.catalog.transformation.file

Text In this mode, a multiline file based format is understood. The file is read and cached in memory. Any
modifications, as adding or deleting, causes an update of the memory and hence to the file underneath. All
queries are done against the memory representation.

The file sample.tc.text in the etc directory contains an example

Here is a sample textual format for transfomation catalog containing one transformation on two sites

tr example::keg:1.0 {
#specify profiles that apply for all the sites for the transformation
#in each site entry the profile can be overriden
profile env "APP_HOME" "/tmp/karan"
profile env "JAVA_HOME" "/bin/app"
site isi {
profile env "me" "with"
profile condor "more" "test"
profile env "JAVA_HOME" "/bin/java.1.6"
pfn "/path/to/keg"
arch "x86"
os "linux"
osrelease "fc"
osversion "4"
type "INSTALLED"
site wind {

5

profile env "me" "with"
profile condor "more" "test"
pfn "/path/to/keg"
arch "x86"
os "linux"
osrelease "fc"
osversion "4"
type "STAGEABLE"

File THIS FORMAT IS DEPRECATED. WILL BE REMOVED IN COMING VERSIONS. USE pegasus-tc-
converter to convert File format to Text Format. In this mode, a file format is understood. The file is read
and cached in memory. Any modifications, as adding or deleting, causes an update of the memory and hence
to the file underneath. All queries are done against the memory representation. The new TC file format uses
6 columns:

1. The resource ID is represented in the first column.

2. The logical transformation uses the colonized format ns::name:vs.

3. The path to the application on the system

4. The installation type is identified by one of the following keywords - all upper case: INSTALLED,
STAGEABLE. If not specified, or NULL is used, the type defaults to INSTALLED.

5. The system is of the format ARCH::OS[:VER:GLIBC]. The following arch types are understood:
"INTEL32", "INTEL64", "SPARCV7", "SPARCV9". The following os types are understood: "LINUX",
"SUNOS", "AIX". If unset or NULL, defaults to INTEL32::LINUX.

6. Profiles are written in the format NS::KEY=VALUE,KEY2=VALUE;NS2::KEY3=VALUE3 Multiple
key-values for same namespace are seperated by a comma "," and multiple namespaces are seperated by a
semicolon ";". If any of your profile values contains a comma you must not use the namespace abbreviator.

pegasus.catalog.transformation.file

Systems: Transformation Catalog

Type: file location string

Default: ${pegasus.home.sysconfdir}/tc.text |
${pegasus.home.sysconfdir}/tc.data

See also: pegasus.catalog.transformation

This property is used to set the path to the textual transformation catalogs of type File or Text. If the transformation
catalog is of type Text then tc.text file is picked up from sysconfdir, else tc.data

Data Staging Configuration

pegasus.data.configuration

System: Pegasus

Since: 3.1

Type: enumeration

Value[0]: sharedfs

Value[1]: nonsharedfs

Value[2]: condorio

Default: sharedfs

This property sets up Pegasus to run in different environments.

6

sharedfs If this is set, Pegasus will be setup to execute jobs on the shared filesystem on the execution site.
This assumes, that the head node of a cluster and the worker nodes share a filesystem. The staging
site in this case is the same as the execution site. Pegasus adds a create dir job to the executable
workflow that creates a workflow specific directory on the shared filesystem . The data transfer
jobs in the executable workflow (stage_in_ , stage_inter_ , stage_out_) transfer the data to this
directory.The compute jobs in the executable workflow are launched in the directory on the shared
filesystem. Internally, if this is set the following properties are set.

pegasus.execute.*.filesystem.local false

condorio If this is set, Pegasus will be setup to run jobs in a pure condor pool, with the nodes not sharing
a filesystem. Data is staged to the compute nodes from the submit host using Condor File IO.
The planner is automatically setup to use the submit host (site local) as the staging site. All the
auxillary jobs added by the planner to the executable workflow (create dir, data stagein and stage-
out, cleanup) jobs refer to the workflow specific directory on the local site. The data transfer
jobs in the executable workflow (stage_in_ , stage_inter_ , stage_out_) transfer the data to this
directory. When the compute jobs start, the input data for each job is shipped from the workflow
specific directory on the submit host to compute/worker node using Condor file IO. The output
data for each job is similarly shipped back to the submit host from the compute/worker node. This
setup is particularly helpful when running workflows in the cloud environment where setting up a
shared filesystem across the VM's may be tricky. On loading this property, internally the following
properies are set

pegasus.transfer.sls.*.impl Condor
pegasus.execute.*.filesystem.local true
pegasus.gridstart PegasusLite
pegasus.transfer.worker.package true

nonsharedfs If this is set, Pegasus will be setup to execute jobs on an execution site without relying on a shared
filesystem between the head node and the worker nodes. You can specify staging site (using --
staging-site option to pegasus-plan) to indicate the site to use as a central storage location for a
workflow. The staging site is independant of the execution sites on which a workflow executes.
All the auxillary jobs added by the planner to the executable workflow (create dir, data stagein
and stage-out, cleanup) jobs refer to the workflow specific directory on the staging site. The data
transfer jobs in the executable workflow (stage_in_ , stage_inter_ , stage_out_) transfer the data to
this directory. When the compute jobs start, the input data for each job is shipped from the workflow
specific directory on the submit host to compute/worker node using pegasus-transfer. The output
data for each job is similarly shipped back to the submit host from the compute/worker node. The
protocols supported are at this time SRM, GridFTP, iRods, S3. This setup is particularly helpful
when running workflows on OSG where most of the execution sites don't have enough data storage.
Only a few sites have large amounts of data storage exposed that can be used to place data during a
workflow run. This setup is also helpful when running workflows in the cloud environment where
setting up a shared filesystem across the VM's may be tricky. On loading this property, internally
the following properies are set

pegasus.execute.*.filesystem.local true
pegasus.gridstart PegasusLite
pegasus.transfer.worker.package true

