
Development of Scientific
Applications with the Mobile
Robot Programming Toolkit

The MRPT reference book

by Jose Luis Blanco Claraco

Machine Perception and Intelligent Robotics Laboratory

University of Malaga

Version: October 25, 2010

ii

Copyright c© 2008-2010 Jose Luis Blanco Claraco and contributors.
All rights reserved.

Permission is granted to copy, distribute verbatim copies and print this docu-

ment, but changing or publishing without a written permission from the authors is

not allowed.

Note:

This book is uncompleted. The most up-to-date version will always be available
online at:

http://www.mrpt.org/The MRPT book

Recent updates:

• Oct 25, 2010: Written chapters §5 and §11.

• Aug 10, 2009: Added description of resampling schemes (§23.3).

• Apr 21, 2009: Updated to MRPT 0.7.0. Added sections on: fixed-size ma-
trixes (§7.1.2), metric maps (§19), file formats (§4).

http://www.mrpt.org/The_MRPT_book

iv

Contents

I First steps 1

1 Introduction 3

1.1 Why a new library? . 3

1.2 What is MRPT? . 4

1.3 What is this book about? . 4

1.4 What is this book not about? 5

1.5 How much does it cost? . 5

1.6 OS restrictions . 5

1.7 Robotic software architectures 6

2 Compiling 7

2.1 Binary distributions . 7

2.2 Prerequisites . 8

2.2.1 GNU/Linux . 8

2.2.2 Windows . 9

2.3 Compiling . 9

2.4 Building options . 9

II User guide 11

3 Applications 13

3.1 pf-localization . 13

3.1.1 Description . 13

3.1.2 Usage . 13

3.1.3 Example configuration file 13

3.2 RawLogViewer . 14

3.2.1 Description . 14

3.2.2 Usage . 14

v

vi CONTENTS

3.3 rbpf-slam . 15

3.3.1 Description . 15

3.3.2 Usage . 15

3.3.3 Example configuration file 15

3.4 rawlog-grabber . 16

3.4.1 Description . 16

3.4.2 Usage . 16

3.4.3 Configuration files . 16

4 File formats 19

III Programming guide 21

5 The libraries 23

5.1 Introduction . 23

5.2 Libraries summary . 23

5.2.1 mrpt-base . 23

5.2.2 mrpt-opengl . 27

5.2.3 mrpt-bayes . 27

5.2.4 mrpt-gui . 27

5.2.5 mrpt-obs . 27

5.2.6 mrpt-scanmatching . 28

5.2.7 mrpt-topography . 28

5.2.8 mrpt-hwdrivers . 28

5.2.9 mrpt-maps . 29

5.2.10 mrpt-vision . 29

5.2.11 mrpt-slam . 29

5.2.12 mrpt-reactivenav . 30

5.2.13 mrpt-hmtslam . 30

5.2.14 mrpt-detectors . 30

6 Your first MRPT program 31

6.1 Source files . 32

6.2 The CMake project file . 33

6.3 Generating the native projects 34

6.4 Compile . 34

6.5 Summary . 34

CONTENTS vii

7 Linear algebra 35

7.1 Matrices . 36

7.1.1 Declaration . 36

7.1.2 Fixed-size matrices . 37

7.1.3 Storage in files . 37

7.2 Vectors . 37

7.2.1 Declaration . 37

7.2.2 Resizing . 38

7.2.3 Storage in files . 38

7.3 Basic operations . 39

7.4 Optimized matrix operations 40

7.5 Text output . 41

7.6 matrices manipulation . 41

7.6.1 Extracting a submatrix 41

7.6.2 Extracting a vector from a matrix 41

7.6.3 Building a matrix from parts 42

7.7 Matrix decomposition . 42

8 Mathematical algorithms 43

8.1 Fourier Transform (FFT) . 43

8.2 Statistics . 43

8.3 Spline interpolation . 43

8.4 Spectral graph partitioning 43

8.5 Quaternions . 43

8.6 Geometry functions . 43

8.7 Numeric Jacobian estimation 43

9 3D geometry 45

9.1 Introduction . 45

9.2 Homogeneous coordinates geometry 45

9.3 Geometry elements in MRPT 45

9.3.1 2D points . 45

9.3.2 3D points . 45

9.3.3 2D poses . 45

9.3.4 3D poses . 45

10 Serialization 49

10.1 The problem of persistence 49

10.2 Approach used in MRPT . 49

10.3 Run-time class identification 51

viii CONTENTS

10.4 Writing new serializable classes 52

10.5 Serializing STL containers . 52

11 Smart Pointers 53

11.1 Overview of memory management 53

11.2 Class hierarchy . 57

11.3 Handling smart pointers . 58

11.3.1 The Create() class factory 58

11.3.2 Testing for empty smart pointers 59

11.3.3 Making multiple aliases 60

11.3.4 The clear() method 61

11.3.5 The clear unique() method 62

11.3.6 The make unique() method 62

11.3.7 Creating from dynamic memory 63

11.3.8 Never create from stack-allocated memory 63

12 Images 65

12.1 The central class for images 65

12.2 Basic image operations . 65

12.3 Feature extraction . 65

12.4 SIFT descriptors . 65

13 Rawlog files (datasets) 67

13.1 Format #1: A Bayesian filter-friendly file format 67

13.1.1 Description . 67

13.1.2 Actual contents of a ”.rawlog” file in this format . . . 68

13.2 Format #2: An timestamp-ordered sequence of observations . 68

13.2.1 Description . 68

13.2.2 Actual contents of a ”.rawlog” file in this format . . . 68

13.3 Compression of rawlog files 68

13.4 Generating Rawlog files . 69

13.5 Reading Rawlog files . 70

13.5.1 Option A: Streaming from the file 70

13.5.2 Option B: Read at once 70

14 GUI classes 71

14.1 Windows from console programs 71

14.2 Bitmapped graphics . 71

14.3 3D rendered graphics . 71

14.4 2D vectorial plots . 71

CONTENTS ix

15 OS Abstraction Layer 73

15.1 Cross platform Support . 73

15.2 Function Areas . 73

15.2.1 Threading . 73

15.2.2 Sockets . 73

15.2.3 Time and date . 73

15.2.4 String parsing . 73

15.2.5 Files . 73

16 Probability density functions (pdfs) 75

16.1 Efficient pose sample generator 75

17 Random number generators 77

17.1 Generators . 77

17.2 Multiple samples . 77

18 Observations 79

18.1 The generic interface . 79

18.2 Implemented observations . 79

18.2.1 Monocular images . 79

18.2.2 Stereo images . 79

19 Metric map classes 81

19.1 The generic interface of maps 81

19.2 The “multi-metric map” container 82

19.3 Implemented maps . 82

19.4 Configuration block for a multi-metric map 83

20 Probabilistic Motion Models 85

20.1 Introduction . 85

20.2 Gaussian probabilistic motion model 86

20.3 Thrun et al.’s book particle motion model 89

21 Sensor Interfaces 91

21.1 Communications . 91

21.1.1 Serial ports . 91

21.1.2 USB FIFO with FTDI chipset 92

21.2 Summary of sensors . 92

21.3 The unified sensor interface 93

21.4 How rawlog-grabber works 93

x CONTENTS

22 Kalman filters 95
22.1 Introduction . 95
22.2 Algorithms . 95
22.3 How to implement a problem as a KF 95

23 Particle filters 97
23.1 Introduction . 97
23.2 Algorithms . 97

23.2.1 SIR . 97
23.2.2 Auxiliary PF . 97
23.2.3 Optimal PF . 97
23.2.4 Optimal-rejection sampling PF 97

23.3 Resampling schemes . 97
23.4 Implementation examples . 102

Listings

6.1 A very simple MPRT program 32

xi

xii LISTINGS

Part I

First steps

1

1
Introduction

1.1 Why a new library?

Many good scientific programs and programming libraries exist out there.
When working with matrices, vectors, and graphical representations, appli-
cations like MATLAB or Octave excel. If one’s needs are efficient image
algorithms under C and C++, OpenCV or VXL are good bets. Other
libraries provide Bayesian inference or random number generators for a va-
riety of probability distributions. When interfacing a variety of sensors, a
low-level language as C is probably one of the best ways to develop a ro-
bust and efficient implementation. A problem raises only when a project
requires performing many or all of these tasks under a single and sensible
development framework, since each library declares its own data structures.
For example, an image grabbed by an OpenCV program cannot be directly
sent to a MATLAB program which detects features.

The development of mobile robotics software is one of those complex
projects that require having at hand a variety of heterogeneous tools: a
robot may capture an image from an IEEE1394 camera, extract features
from it, read odometry information from wheel encoders through a serial
port, and then fuse all these data using a Kalman filter in matrix form.
This contains tasks which range from low-level code (close to hardware), up
to linear algebra.

3

4 CHAPTER 1. INTRODUCTION

1.2 What is MRPT?

To face the development of such software, we have created the Mobile Robot
Programming Toolkit, or MRPT. This framework acts as the glue that makes
possible to interconnect several third-party libraries, but it also implements
several features on its own.

Despite the name, MRPT currently comprises several generic libraries in
C++ which can be perfectly employed for developing any kind of scientific
application that requires 2D plots, linear algebra, 3D geometry, Bayesian
inference, 3D scene animations, or any combination of them.

In the specific field of mobile robotics, MRPT is aimed to help researchers
to design and implement algorithms in the areas of Simultaneous Localiza-
tion and Mapping (SLAM), computer vision and motion planning (obstacle
avoidance). The libraries include classes for easily managing 3D(6D) ge-
ometry, probability density functions (pdfs) over many predefined variables
(points and poses, landmarks, maps), Bayesian inference (Kalman filters,
particle filters), image processing, path planning and obstacle avoidance,
3D visualization of all kind of maps (points, occupancy grids, landmarks,...),
and “drivers” for a variety of robotic sensors.

1.3 What is this book about?

This document tries to address the needs of two different kinds of readers:

• Firstable, users of MRPT programs. The toolkit is not only a
collection of libraries, but also contains some ready-to-use programs.
With those applications, a user can record data from a mobile robot,
manipulate the logs if needed, and create point or occupancy grid-
maps using state-of-the-art algorithms without typing a single line of
source code.

• Developers. Users who pretend to integrate their own algorithms
into MRPT or to use it as a layer on which to develop more powerful
applications or libraries.

Obviously, many readers may fit within both kinds of readers, but for
reasons of clarity, this book is structured into two well-differentiated parts.
Part II addresses using existing programs, while Part III discusses more
in-deep details required for MRPT programmers.

1.4. WHAT IS THIS BOOK NOT ABOUT? 5

1.4 What is this book not about?

The intention is that this book does not become one of those boring, and
nearly useless hard copies of a library reference. This book pretends to
let a programmer know what is inside MRPT, as a birth-eye-view. Once
he or she needs to handle any specific class, the reference documentation
(created with Doxygen) will be an invaluable tool, and indeed one of our
main concerns during the development of MRPT has been an extensive and
good reference documentation, which is available online at the MRPT web
site1.

But before reading that documentation, the programmer should have a
gross idea of how things are managed within MRPT, and that is precisely
the aim of this book.

1.5 How much does it cost?

MRPT is free software. Free in both senses: you can use it without any
cost, and it is an Open Source project. We have released the sources under
GNU General Public License 3. Feel free to modify the sources for your
needs, to the extent allowed by the aforementioned license. If you want to
contribute with patches or bug reports (or even better, bug fixes!), please
contact the authors through the forums in http://www.mrpt.org/.

MRPT is released
under GNU GPL 3.

Despite its beginnings at the MAPIR Laboratory in the University of
Málaga, several people world-wide have contributed in different ways to its
development since its release as an Open Source project. We kindly thank
everyone who has helped in any way, and hope more people continue getting
involved in the future2.

1.6 OS restrictions

MRPT is designed to be cross-platform. It works under 32bit and 64bit
systems. Thus, the good news is that any user application developed with
MRPT and no other OS-dependant API will also become cross-platform
without any extra effort.

The libraries are daily tested under Windows 32bit and Linux. In theory
they should also work under any POSIX-compatible system equipped with

1http://www.mrpt.org/
2The complete list of authors can be checked out online at

http://www.mrpt.org/Authors

http://www.mrpt.org/
http://www.mrpt.org/Authors

6 CHAPTER 1. INTRODUCTION

a decent C++ compiler, like Mac OS X, Solaris, BSDs, etc, but all these
platforms have not been tested yet3.

1.7 Robotic software architectures

MRPT provides several ready-to-use data structures and algorithms which
can be directly used to build software aimed to be run on a vehicle or robot.
In fact, some MRPT applications (e.g. rawlog-grabber) are designed for
this purpose.

However, intelligent robots usually require a much more complex soft-
ware than a single application. Robotic software architectures play the role
of splitting the code into independent programs (or “modules”) which, as a
whole, comprise the robot software. In such a framework MRPT might be
just a “low-level” library.

A number of publicly available frameworks exist. In our group, we de-
veloped the BABEL system [7], available online for download at [8]. Other
development environments are the Player project [2], MOOS [10] and CAR-
MEN [9].

3An up-to-date list of systems where MRPT has been completely tested can be found
in http://www.mrpt.org/Supported Platforms

http://www.mrpt.org/Supported_Platforms

2
Compiling

This chapter explains how to compile the MRPT libraries and applications,
and also whether a user may instead prefer a pre-compiled version.

If you are sure you prefer (or have to) compile MRPT from sources, skip
the next section and continue with section 2.2.

2.1 Binary distributions

For Windows users, may want to only use existing MRPT applications,
so they do not pretend to develop custom programs based on MRPT. For
such users, precompiled binary distributions of MRPT exist and perhaps
are a better choice than compiling it from sources. These binary packages
also allow compiling custom MRPT-based programs, but if the user needs
a compiler different that Visual Studio C++, MRPT had to be compiled
from sources. For Linux users, precompiled packages from the repositories
are recomendable not only for using MRPT applications, but also for devel-
opment.

In the case of 32bit Windows XP/Vista/7, binary packages are available
for download at the main MRPT download page1. There are packages for
GNU/Linux for the following distributions:

• Debian (unstable and testing repository).

1http://www.mrpt.org/downloads/

7

8 CHAPTER 2. COMPILING

• Ubuntu (from version 9.04).

• Fedora Core (from version 9).

All the packages can be installed by executing:

$ sudo apt-get install mrpt-apps mrpt-dev mrpt-doc

or manually from synaptic or the appropriate package manager.

2.2 Prerequisites

As with any mid or large-size software collection, MRPT requires some
programs and libraries to be installed in your system before you can compile
it. Next sections explain the required steps for each system, but in general
the main requisites are:

• CMake: A powerful cross-platform build system.

• wxWidgets: An extensive GUI toolkit.

• OpenCV: A widely-used computer vision library.

2.2.1 GNU/Linux

Debian, Ubuntu

Invoke:

sudo apt-get install build-essential cmake libwxgtk2.8-dev libwxbase2.8-dbg

libwxgtk2.8-dbg libftdi-dev libglut3-dev libhighgui-dev lib3ds-dev

libboost-program-options-dev

Note that if version 2.8 of wxWidgets is not available in your distribution,
it would have to be installed manually.

Fedora

Invoke as root:

yum install gcc gcc-c++ make cmake wxGTK-devel opencv-devel freeglut-devel

lib3ds-devel boost-dev

2.3. COMPILING 9

OpenSUSE

Invoke:

sudo zypper install make gcc gcc-c++ cmake cmake-gui pkg-config

zlib-devel wxGTK-devel wxGTK-gl libusb-devel freeglut-devel lib3ds-devel

libboost-program-options

Installing OpenCV on OpenSUSE

OpenCV must be downloaded and compiled from sources manually in
OpenSUSE. Download the opencv-1.0.0.tar.gz Linux sources and follow these
steps:

1. Install the dependencies. This will assure some packages required by
OpenCV GUI and video grabbing. Invoke:

sudo zypper install make gcc gcc-c++ wxGTK-devel libdc1394-devel

libraw1394-devel libpng-devel libjpeg-devel

Optionally, if you enable the ”Packman repository”, the package ffm-
peg should be also installed.

2. Decompress the tarball:

tar -xf opencv-1.0.0.tar.gz

3. Then go to the newly created directory and invoke the configure tool:

./configure

If everything goes fine, no error will be reported as all the dependencies
are satisfied. Now compile and install OpenCV with:

make && sudo make install && sudo /sbin/ldconfig

2.2.2 Windows

2.3 Compiling

2.4 Building options

The table summarizes the most important options which can be set through
the CMake gui (ccmake, cmakesetup, or cmake-gui):

http://sourceforge.net/project/showfiles.php?group_id=22870&package_id=16948

10 CHAPTER 2. COMPILING

Source directory

mrpt-0.6.2

src

include

CMakeLists.txt

…

Binary directory

my-mrpt-bin

lib

bin

CMakeCache.txt

…

CMake

MRPTConfig.cmake

…

GCC

Visual Studio

Figure 2.1: The concepts of source and binary (or build) directories with the
CMake toolchain.

For all platforms/compilers

BUILD_SHARED_LIBS Build static libraries if set to OFF, or dynamic libraries
BUILD_EXAMPLES Whether you want to compile all the examples in the
MRPT_HAS_BUMBLEBEE To enable integration of the Bumblebee stereo camera
MRPT_ALWAYS_CHECKS_DEBUG If set to ON, additional security checks will be performed
MRPT_ALWAYS_CHECKS_DEBUG_MATRICES If set to ON, additional security checks will be performed
MRPT_OCCUPANCY_GRID_CELLSIZE Can be either 8 or 16 (bits). The size of each cell in the
USER_EXTRA_CPP_FLAGS You can add here whatever additional flags to be passed
MRPT_HAS_ASIAN_FONTS Enables Asian fonts in CCanvas, but increases library
BUILD_xSENS Whether to use the CMT library for interfacing xSens

Microsoft Visual Studio

CMAKE_MRPT_HAS_VLD Whether to include the Visual Leak Detector (VLK). Default is OFF. If

GNU GCC compiler only

MRPT_ENABLE_LIBSTD_PARALLEL_MODE Enables the experimental GNU libstdc++ parallel mode.
MRPT_ENABLE_PROFILING Enables generation of information required for profiling.
MRPT_OPTIMIZE_NATIVE Enables optimization for the current architecture (-mtune=nativ

Part II

User guide

11

3
Applications

3.1 pf-localization

3.1.1 Description

3.1.2 Usage

3.1.3 Example configuration file

13

14 CHAPTER 3. APPLICATIONS

3.2 RawLogViewer

3.2.1 Description

3.2.2 Usage

3.3. RBPF-SLAM 15

3.3 rbpf-slam

3.3.1 Description

3.3.2 Usage

3.3.3 Example configuration file

16 CHAPTER 3. APPLICATIONS

3.4 rawlog-grabber

3.4.1 Description

rawlog-grabber is a command-line application which uses a generic sensor
architecture to allow collecting data from a variety of robotic sensors in real-
time taking into account the different rates at each sensor may work. This
program creates a thread for each sensor declared in the config file and then
saves the timestamp-ordered observations to a rawlog file - the format of
those files is explained in Chapter 13.

The valuable utility of this application is to collect datasets from mobile
robots for off-line processing.

3.4.2 Usage

This program is invoked from the command line with:

rawlog -grabber <config_file .ini >

3.4.3 Configuration files

The format of the configuration file is explained in the comments of the
following prototype file. Refer also to the directory

MRPT/shared/mrpt/config_files/rawlog-grabber

for more sample files and to the next sections for each specific sensor1.

// --

// Example config file for rawlog -grabber

//

// ~ The MRPT project ~

// Jose Luis Blanco Claraco (C) 2005 -2008

// --

// Each section [XXXXX] (except [global]) sets up a thread in

// the rawlog -grabber standalone application. Each thread collects

// data from one sensor or device , then the main thread groups

// and orders them before streaming everything to a rawlog file.

// The name of the sections can be arbitrary and independent

// of the sensor label. The driver for each sensor is actually

// determined by the field "driver ", which must match the name

// of some class in mrpt:: hwdrivers implementing CGenericSensor.

// ===

// Section: Global settings to the application

1However, notice that the most up-to-date documentation will be always available in
the reference of CGenericSensor and their derived classes.

http://reference.mrpt.org/stable/classmrpt_1_1hwdrivers_1_1_c_generic_sensor.html

3.4. RAWLOG-GRABBER 17

// ===

[global]

// The prefix can contain a relative or absolute path.

// The final name will be <PREFIX >_date_time.rawlog

rawlog_prefix = dataset

// Milliseconds between thread launches

time_between_launches = 800

// SF=1: Enabled -> Observations will be grouped by time periods.

// SF=0: Disabled -> All the observations are saved independently

// and ordered solely by their timestamps.

use_sensoryframes = 1

// Only if "use_sensoryframes =1": The maximum time difference between

// observations within a single sensory -frame .

SF_max_time_span = 0.25 // seconds

// Observations will be processed at the main thread with this period

GRABBER_PERIOD_MS = 1000 // ms

// Here follow sections for each sensor .

// This is one example for a Hokuyo laser scanner:

// ===

// SENSOR : LASER_2D

// ===

[LASER_2D]

driver = CHokuyoURG

process_rate = 90 ; Hz

sensorLabel = HOKUYO_UTM

pose_x = 0 ; Laser range scaner 3D position

pose_y = 0 ; on the robot (meters)

pose_z = 0.31

pose_yaw = 0 ; Angles in degrees

pose_pitch = 0

pose_roll = 0

COM_port_WIN = COM3

COM_port_LIN = ttyACM0

Specification for: Hokuyo Laser

Specification for: GPS

Specification for: Camera

18 CHAPTER 3. APPLICATIONS

4
File formats

In this chapter we summarize the format of MRPT data files which are
managed by the library itself and some of the applications, sorted by their
most common file extensions.

• .gridmap (or compressed version .gridmap.gz). A 2D occupancy
grid map. These files consist on one COccupancyGridMap2D object
serialized into a binary file. See Chapter 10 for more details on how
to serialize and de-serialize objects.

• .ini. Configuration files. The format is plain text, with the file
structured in sections (denoted as [NAME]) and variables within each
section (denoted by var=value). These files can contain comments,
which may start with ; or //.

• .simplemap (or compressed version .simplemap.gz). A collection of
pairs location-observations, from which metric maps can be built eas-
ily. The file actually contains a binary serialization of an object of
the class CSensFrameProbSequence. See Chapter 10 for more de-
tails on how to serialize and de-serialize objects. The application
observations2map can convert a simplemap file into a set of different
metric maps (grid maps, point maps,...) and save them to different
files. Refer to the documentation of that program for details.

19

20 CHAPTER 4. FILE FORMATS

• .rawlog. Robotic datasets. The format of these files is explained
in detail in the Chapter 13. These files can be managed and visual-
ized with the application RawlogViewer, or captured from sensors by
rawlog-grabber.

Part III

Programming guide

21

5
The libraries

5.1 Introduction

MRPT consists of a set of C++ libraries and a number of ready-to-use
applications. This chapter briefly describes the most interesting part of
MRPT for mobile robotics developers: the libraries.

The large number of C++ templates and classes in MRPT makes it
a good idea to split them into a set of libraries or ”modules”, so users can
choose to depend on a part of MRPT only, reducing compile time and future
dependence problems.

The dependence graph in Figure 5.1 shows the currently existing libraries
in MRPT. An arrow A→ B means ”A depends on B”. The starred libraries
are in an experimental stage and their sources may not be released yet or, if
they are, changes in the API can be expected in the future without assuring
backward compatibility.

5.2 Libraries summary

5.2.1 mrpt-base

This is the most fundamental library in MRPT, since it provides a vast
amount of utilities and OS-abstraction classes upon which the rest of MRPT

23

24 CHAPTER 5. THE LIBRARIES

Figure 5.1: An overview of the individual libraries within MRPT and their de-
pendencies, as of version 0.9.2.

is built. Here resides critical functionality such as mathematics, linear alge-
bra §7.1, serialization §10, smart pointers §11 and multi-threading.

All MRPT classes and functions live within the global namespace mrpt

or one of a series of nested namespaces. This particular library comprises
classes in a number of different namespaces, briefly described next.

mrpt::poses

This namespace contains a comprehensive collection of geometry-related
classes to represent all kind of 2D and 3D geometry transformations in
different formats (Euler angles, rotation matrices, quaternions), as well as
networks of pose constrains (as used in GraphSLAM problems).

There are also representations for probability distributions over all of
these transformations, in a generic way that allow mono and multi-modal
Gaussians and particle-based representations.

mrpt::utils

The functionality of this namespace includes:

5.2. LIBRARIES SUMMARY 25

• RTTI (RunTime Type Information): A cross-platform, compiler-independent
RTTI system is built around the base class mrpt::utils::CObject.

• Smart pointers: Based on the STLplus library, any class CFoo inher-
iting from CObject, automatically has an associated smart pointer
class CFooPtr. MRPT implements advanced smart pointers capable
of multi-thread safe usage and smart pointer typecasting with runtime
check for correct castings (see §11).

• Image handling: The class CImage represents a wrapper around OpenCV’s
IplImage data structure, plus extra functionality such as on-the-fly
loading of images stored in disk upon first usage (see §12). The in-
ternal IplImage is always available so OpenCV functions can be still
used to operate on MRPT images.

• Serialization/Persistence: Object serialization in a simple but powerful
(including versioning) format is supported by dozens of MRPT classes,
all based on CSerializable.

• Streams: Stream classes (see the base CStream) allow serialization of
MRPT objects. There are classes for transparent GZ-compressed files,
sockets, serial ports, etc.

• XML-based databases: Simple databases can be maintained, loaded
and saved to files with CSimpleDatabase.

• Name-based argument passing: The structure TParameters can be
used to pass a variable number of arguments to functions by name.

• Configuration files: There is one base virtual class (CConfigFileBase)
which can be used to read/write configuration files (including basic
types, vectors, matrices,...) transparently from any “configuration
source” (a physical file, a text block created on the fly as a string,
etc.).

mrpt::math

MRPT defines a number of generic math containers (described in §7.1),
namely:

• Matrices: Dynamic-size and compile-time fixed-size matrices.

26 CHAPTER 5. THE LIBRARIES

• Matrix views: Proxy classes that allow operating on the transpose, a
part of, or the diagonal of another matrix as if it was a plain matrix
object.

• Vectors: Dynamic-size vectors, built upon standard STL std::vector.

• Arrays: Fixed-size vectors, just like plain C arrays but with support
for STL-like iterators and many mathematical operations.

These containers have a number of characteristics in common (e.g. STL-
like iterators and typedefs) and can be mixed altogether in operations. For
example, matrices of any kind can be operated together, a vector can be
added to an array, or the results of a matrix operation stored in a matrix
view. Fixed-size containers should be preferred where possible, since they
allow more compile-time optimizations.

Apart from the containers, this namespace contains much more func-
tionality:

• A templatized RANSAC algorithm.

• Probability distribution functions.

• Statistics: mean, covariance, covariance of weighted samples, etc...
from sets of data.

• A huge amount of geometry-related functions: Lines (TLine3D), planes
(TPlane3D), segments, polygons, intersections between them, etc.

• Graph-related stuff: generic directed graphs (CDirectedGraph) and
trees (CDirectedTree).

• PDF transformations (uncertainty propagation): Linearized, unces-
ted or MonteCarlo-based propagation of Gaussian distributions of any
dimensionality via arbitrary transformation functions.

mrpt::synch

Threading tools can be found here such as critical sections or semaphores.

mrpt::system

Here can be found functions for filesystem managing, watching directories,
creating and handling threads in an OS-independent way, etc.

5.2. LIBRARIES SUMMARY 27

mrpt::compress

This namespace contains the methods needed to compress and decompress
with the GZip algorithm, independently of whether the zlib library exists in
the system or not.

5.2.2 mrpt-opengl

This library defines 3D rendering primitive objects that can be combined
into scene objects. These scenes can be saved to files or visualized in real-
time.

Note that all the C++ classes in this library will be always defined, even
if MRPT is built without OpenGL support, thus scene data structures can
be always built and saved to disk or streamed for rendering on other system.

5.2.3 mrpt-bayes

This library provides a templatized Kalman filter (KF) implementation that
includes the Extended KF (EKF) and the Iterated EKF. It only requires
from the user to provide the system models and, optionally, the Jacobians.

5.2.4 mrpt-gui

This library provides three classes for creating and managing GUI windows,
each having a specific specialized purpose:

• CDisplayWindow: Displays 2D bitmap images, and optionally sets of
points over them, etc.

• CDisplayWindow3D: A powerful 3D rendering window capable of dis-
playing an COpenGLScene. It features mouse navigation, Alt+Enter
fullscreen switching, multiple viewports, etc.

• CDisplayWindowPlots: Displays one or more 2D vectorial graphs,
with an interface resembling MATLAB’s plot commands.

5.2.5 mrpt-obs

In this library there are five key elements or groups of elements:

• Sensor observations: All sensor observations share a common virtual
base class (mrpt::slam::CObservation). There are classes to store
laser scanners, 3D range images, monocular and stereo images, GPS

28 CHAPTER 5. THE LIBRARIES

data, odometry, etc. A concept very related to observations is a
mrpt::slam::CSensoryFrame, a set of observations which were col-
lected approximately at the same instant. Chapter 18 explores these
classes.

• Rawlogs or datasets: A robotics dataset can be loaded, edited and
explored by means of the class mrpt::slam::CRawlog, as explained in
Chapter 13.

• Actions: For convenience in many Bayesian filtering algorithms, robot
actions (like 2D displacement characterized by an odometry increment)
can be represented by means of “actions”.

• Simple maps: A ”simple map” in MRPT is a set of pairs (posi-
tion,sensory frame). The advantage of maintaining such a simple
map format instead a metric map is that the metric maps can be
rebuilt when needed with different parameters from the raw observa-
tions, which are never lost.

• CARMEN logs tools: Utilities to read from CARMEN log files and
load their observations as MRPT observations1.

5.2.6 mrpt-scanmatching

Within this library (which defines the namespace mrpt::scanmatching) we
find functions in charge of solving the optimization problem of aligning a set
of correspondences, both in 2D and in 3D. Note that this does not includes
the iterative ICP algorithm, included instead into the library mrpt-slam.

5.2.7 mrpt-topography

This library provides, in the namespace mrpt::topography, conversion func-
tions and useful data structures to handle topographic data, perform geoid
transformations, geocentric coordinates, etc.

5.2.8 mrpt-hwdrivers

This namespace includes several hardware-related classes, from serial port
interfaces, USB FTDI chip interfaces, to more complex ones including han-

1Refer to mrpt::slam::carmen log parse line and the applications carmen2rawlog

and carmen2simplemap

5.2. LIBRARIES SUMMARY 29

dling specific proprietary protocols (i.e. SICK and Hokuyo scanners), cam-
eras, etc. All classes of this library live in the namespace mrpt::hwdrivers.

5.2.9 mrpt-maps

This library includes (almost) all the maps usable for localization or mapping
in the rest of MRPT classes. All the classes are defined in the namespace
mrpt::slam. Refer to Chapter 19 for a discussion on these metric maps.

This library also adds new classes (CAngularObservationMesh and CPlanarLaserScan)
to the namespace mrpt::opengl, which couldn’t be included in the library
mrpt-opengl due to its heavy dependence on map classes declared here.

It is worth mentioning that one of the most useful map classes, namely
mrpt::slam::CMultiMetricMap, is not in this library, but within mrpt-slam.

5.2.10 mrpt-vision

This library includes some wrappers to OpenCV methods and other original
functionality:

• The namespace mrpt::vision::pinhole contains several projection
and Jacobian auxiliary functions for projective cameras.

• Sparse Bundle Adjustment algorithms.

• A versatile feature tracker (refer to mrpt::vision::CFeatureTracker KL).

• A generic representation of visual features, with or without patches,
with or without a set of descriptors (see mrpt::vision::CFeature).

• A hub for a number of detection algorithms and different descriptors,
in the class mrpt::vision::CFeatureExtraction.

5.2.11 mrpt-slam

Interesting algorithms provided by this library, whose classes live in the
namespace mrpt::slam, include:

• mrpt::slam::CMetricMapBuilder: A virtual base for both ICP and
RBPF-based SLAM.

• mrpt::slam::CMonteCarloLocalization2D: Particle filter-based (Monte
Carlo) localization for a robot in a planar scenario.

30 CHAPTER 5. THE LIBRARIES

• mrpt::slam::CMultiMetricMap: The most versatile kind of metric
map, which contains an arbitrary number of any other maps.

• Kalman Filter-based Range-Bearing SLAM, both in 2D and 3D. These
algorithms are demonstrated in the applications 2d-slam-demo and
kf-slam, respectively.

• Data association: The nearest neighbor (NN) and the Joint-Compatibility
Branch and Bound (JCBB) algorithms are implemented here as generic
templates.

• Graph-SLAM: Methods to optimize graphs of pose constraints.

5.2.12 mrpt-reactivenav

This library implements the following algorithms in the namespace mrpt::reactivenav:

• Holonomic navigation algorithms: Virtual Force Fields (VFF) and
Nearness Diagram (ND).

• A complex reactive navigator, using space transformations (PTGs) to
drive a robot using an internal simpler holonomic algorithm (refer to
class CReactiveNavigationSystem).

• A number of different PTGs

All these methods are demonstrated in the application ReactiveNaviga-
tionDemo.

5.2.13 mrpt-hmtslam

This library includes an implementation of the Hybrid Metric-Topological
(HMT) SLAM framework.

5.2.14 mrpt-detectors

A set of generic computer-vision-based detectors are implemented here. De-
tectors exist that can fuse observations from different sensors to improve the
detection of, for example, faces.

6
Your first MRPT program

At this point, it is assumed that MRPT has been already compiled in any
arbitrary user directory (or, optionally, installed in the system, e.g. using
synaptic). If this is not the case, refer to Chapter 2 for instalation instruc-
tions.

In this chapter you will learn the basics of the CMake building system
and how to use it to create and compile a very simple MRPT program. The
complete files of this example can be found within the MRPT packages at
MRPT/doc/mrpt_example1.tar.gz1.

1Or downloaded from this link: mrpt example1.tar.gz

31

http://browse-code.mrpt.org/stable/doc/mrpt_example1.tar.gz

32 CHAPTER 6. YOUR FIRST MRPT PROGRAM

6.1 Source files

As explained in Chapter 5, MRPT comprises different libraries (base, opengl,
slam, etc.), thus the first step is determine which ones your program will
need. As an example, let’s assume only mrpt-base and mrpt-gui are
needed. Then, the first step is to include the corresponding headers in
your program:

include <mrpt/base.h>

include <mrpt/gui.h>

using namespace mrpt;

using namespace mrpt :: utils;

using namespace mrpt :: poses;

using namespace mrpt ::gui;

using namespace std;

Obviously, the using namespace statements are not mandatory, but
recommended for code clarity. Note that each library (remember they are
listed in §5) has a main header, named <mrpt/name.h> for the libray mrpt-
name.

Now we will see a complete program. This very basic example that only
uses the library mrpt-base and just creates a pair of 2D (x, y, φ) and 3D
(x, y, z, yaw, pitch, roll) poses and computes the composed pose R⊕ C and
the distances between them:

Listing 6.1: A very simple MPRT program

include <mrpt/base.h>

using namespace mrpt :: utils;

using namespace mrpt :: poses;

using namespace std;

int main ()

{

// Robot pose: 2D (x,y,phi)

CPose2D R(2,1, DEG2RAD (45.0));

// Camera pose relative to the robot : 6D (x,y,z,yaw ,pitch ,roll).

CPose3D C(0.5 ,0.5 ,1.5 ,

DEG2RAD (-90.0), DEG2RAD (0), DEG2RAD (-90.0));

cout << "R: " << R << endl;

cout << "C: " << C << endl;

cout << "R+C:" << (R+C) << endl;

cout << "|R-C|= " << R.distanceTo (C) << endl;

return 0;

}

Save this program as test.cpp and half the work is done!

6.2. THE CMAKE PROJECT FILE 33

6.2 The CMake project file

The simplest CMake project must contain just one file CMakeLists.txt.
Create a file with that name and with the following contents in the same
directory than the file test.cpp:

PROJECT (mrpt_example1)

CMAKE_MINIMUM_REQUIRED (VERSION 2.4)

--

Indicate CMake 2.7 and above that we don ’t want to mix relative

and absolute paths in linker lib lists .

Run "cmake --help -policy CMP0003" for more information.

--

if(COMMAND cmake_policy)

cmake_policy(SET CMP0003 NEW)

endif(COMMAND cmake_policy)

--

The list of "libs" which can be included can be found in:

http ://www.mrpt.org/ Libraries

#

The dependencies of a library are automatically added , so you only

need to specify the top -most libraries your code depend on.

--

FIND_PACKAGE(MRPT REQUIRED base)

Declare the target (an executable)

ADD_EXECUTABLE(mrpt_example1

test.cpp

)

Tell the compiler to link against MRPT libraries.

TARGET_LINK_LIBRARIES(mrpt_example1 ${MRPT_LIBS })

There are two important steps in this CMake script: looking for the
MRPT libraries and defining a target (which eventually will become a Visual
Studio Project, or a Makefile) named mrpt_example1 which contains only
one source file test.cpp.

Let’s review briefly how CMake look for the MRPT libraries. Recall
Figure 2.1 and the discussion in that chapter on source vs. binary (or build)
directories in CMake. With the command FIND_PACKAGE(...), CMake will
look for a file named MRPTConfig.cmake, which contains information such as
where are the library header directories, or which libraries should a program
link against. If you have compiled MRPT manually, this directory will be
your MRPT binary directory. If MRPT has been installed in a Unix system,
it should be located at /usr/share/mrpt/.

34 CHAPTER 6. YOUR FIRST MRPT PROGRAM

6.3 Generating the native projects

Now, a native project must be created to compile your program, where na-
tive means a project for your preferred compiler or IDE which is supported
by CMake. Some examples are: Unix makefiles, Visual Studio solutions,
Code Blocks projects, Eclipse projects, etc. In any case, create a new di-
rectory to make an off-tree build, for example first_mrpt_bin. We will
refer to the directory with the sources (test.cpp and CMakeLists.txt), as
path_first_mrpt_src.

Under Unix or GNU/Linux, go to the new empty directory and invoke:

first_mrpt_bin$ cmake {path_first_mrpt_src}

or, to invoke the NCurses GUI version:

first_mrpt_bin$ ccmake {path_first_mrpt_src }

On Windows, execute cmake-gui or cmakesetup and select the source
({path_first_mrpt_src}) and binary (first_mrpt_bin) directories. Note
that in some Linux distributions cmake-gui is also available.

At this point, press the button “configure” in CMake, then “generate”
to build your project. If CMake complains about not finding MRPT, set
manually the variable MRPT_DIR to the directory where you compiled MRPT
(or /usr/share/mrpt/ if it was installed through synaptic or apt).

6.4 Compile

Once generated the project for your favorite compiler, just manage it as
usual. For example, for Unix Makefiles, go to the binary directory and
invoke make. For Visual Studio, open the solution file mrpt-example1.sln

and compile as usual.

6.5 Summary

Creating user applications with MRPT requires adding the corresponding
MRPT headers to the sources and creating a CMake project which includes
MRPTConfig.cmake using the command FIND_PACKAGE(MRPT REQUIRED {LIBS}).
The simple project presented in this chapter could be hopefuly used as a
base for the user to create more complex applications.

7
Linear algebra

In this chapter you will learn one of the most basic features of MRPT: vector
and matrix manipulation. The basic syntax in many cases will remain very
close to that used in MATLAB, although the syntax must change a little
for using the most optimized functions if the application performance is a
priority.

In the following, all the required classes can be included in a program
with:

#include <mrpt/core.h>

using namespace mrpt;

using namespace mrpt ::math;

using namespace mrpt :: utils;

using namespace mrpt :: system ;

Currently there is no support for reading/writing binary MATLAB files,
but this limitation is not severe since files saved from MATLAB in plain
text (with the format --ascii) are fully supported.

Notice that, like in C/C++ languages in general, the first element in
any sequence has the index 0. This convention also applies to all matrices
and vectors in MRPT. As usual, for matrices the first index corresponds to
rows.

35

36 CHAPTER 7. LINEAR ALGEBRA

7.1 Matrices

7.1.1 Declaration

MRPT defines two kind of matrices: variable-sized and fixed-sized. Most of
this chapter will focus on the dynamic-size kind, but most of the operators
and methods are applicable to both types of objects.

Matrices are implemented as class templates in MRPT, but the following
two types are provided for making programs more readable:

typedef CMatrixTemplateNumeric <float > CMatrixFloat;

typedef CMatrixTemplateNumeric <double > CMatrixDouble;

A matrix with any given size can be created by passing it at construction
time, or otherwise it can be resized later as shown in this example:

CMatrixDouble M(2 ,3); // Create a 2x3 matrix

cout << M(0,0) << endl; // Print out the left -top element

CMatrixDouble A; // Another way of creating

A.setSize (3 ,4); // a 2x3 matrix

A(2,3) = 1.0; // Change the bottom -right element

A matrix can be resized at any time, and the contents are preserved if
possible. Notice also in the example how the element at the r’th row and
c’th column can be accessed through M(r, c).

Sometimes, predefined values must be loaded into a matrix, and writing
all the assignments element by element can be tedious and error prone. In
those cases, better use this constructor:

const double numbers [] = {

1,2,3,

4,5,6 };

CMatrixDouble N(2,3, numbers);

cout << "Initialized matrix : " << endl << N << endl;

If the size of the vector does not fit exactly the matrix, an exception will
raise at run-time. This example above also illustrates how to dump a matrix
to the console, which is useful for debugging in case of small matrices.

7.2. VECTORS 37

7.1.2 Fixed-size matrices

When the size of matrices is known a priori, it is advisable to use the al-
ternative implementation based on fixed-size matrices1. These objects are
managed very similarly to dynamic matrices, including most operators and
methods. Naturally, the only difference comes into their declaration:

const double numbers [] = {

1,2,3,

4,5,6 };

CMatrixFixedNumeric <double ,2,3> N (numbers);

cout << " Initialized matrix : " << endl << N << endl;

Predefined type names exist for double matrices of many common sizes:

CMatrixFixedNumeric <double ,10,3> M;

CMatrixDouble33 A = (~M) * M; // Predefined type for 3x3

Whenever possible, employ fixed-sized matrices, especially for small ma-
trices, since the speed gain can be in the order of ten or more for most
operations.

7.1.3 Storage in files

When managing large matrices, it is useful to load or save them in files.
In particular, it would be even more handful to make those files compati-
ble with MATLAB. This format exists and is as simple as plain text files.
For example, the following small program loads a matrix from a file, then
compute its eigenvectors and save them to a different file:

CMatrixDouble H,Z,D;

H.loadFromTextFile("H.txt"); // H <- ’H.txt’

H.eigenVectors(Z,D); // Z: eigenvectors , D: eigenvalues

Z.saveToTextFile("Z.txt "); // Save Z in ’Z.txt’

7.2 Vectors

7.2.1 Declaration

The base class for vectors is the standard STL container std::vector,
such as a user will normally declare and manipulate objects of the types

1This feature is available in MRPT 0.7.0 or newer.

38 CHAPTER 7. LINEAR ALGEBRA

vector_float or vector_double 2, for element types being float or double,
respectively:

typedef std ::vector <float > vector_float;

typedef std ::vector <double > vector_double;

7.2.2 Resizing

To resize a vector we must use the standard std::vector methods, that is:

vector_double V(5 ,1); // Create a vector with 5 ones.

V.resize (10);

cout << V << endl; // Print out the vector to console

7.2.3 Storage in files

There is less support yet to vector I/O than in the case of matrices, so it is
normally advisable to use matrices when loading text files, especially when
the format of the file is unknown (e.g. column vs. row vector).

Reading a vector from a text file

This works for row vectors only:

vector_double v;

loadVector (CFileInputStream("in.txt"), v);

Saving to a text file

The function vectorToTextFile allows saving as a row, as a column, and
optionally, to append at the end of the existing file:

vector_double v(4 ,0); // [0 0 0 0]

vectorToTextFile(v, "o1.txt"); // Save as row

vectorToTextFile(v, "o2.txt", true); // Append a new row

vectorToTextFile(v, "o3.txt", false , true); // Save as a column

2One can also use CVectorFloat and CVectorDouble, which have some useful op-
erations implemented as methods, but most MRPT interfaces expect the simpler STL
containers.

7.3. BASIC OPERATIONS 39

Serializing

If you prefer to serialize the vectors in binary form (see chapter 10), that
can be done as simply as:

vector_double v = linspace (0 ,1 ,100); // [0 ... 1]

CFileOutputStream("dump.bin") << v;

7.3 Basic operations

In this section we will go through a quick summary of unary and binary
operations for matrices, vectors, or a mix of them. Table 7.3 lists some
of the most simple of these operations in common mathematical notation,
in C++ using MRPT operators and alternative functional forms. Most
operations apply indistinctly to dynamic and fixed-size matrices.

Description Operation MRPT C++ 2nd alternative
Read element a←M(i, j) a = M(i,j) a=M.get unsafe(i,j)
Write element M(i, j)← a M(i,j) = a M.get unsafe(i,j)=a
Matrix inverse M−1 !M M.inv()

Matrix transpose M⊤ ~M
Matrix assignment Q←M Q = M
Matrix comparison Q = M? Q == M, Q!=M

Matrix sum/substract M +Q, M −Q M+Q, M-Q
In place sum M ←M +Q M+=Q

Vector sum/substract v + w, v − w v+w, v-w
Scalar multiplication M ←Ma M*=a
Matrix multiplication MQ M*Q
Matrix multiplication M ←MQ M = M*Q M.multiply(Q)
Matrix/vector mult. Mv M*v
Multiply by inverse MQ−1 M/Q

Determinant |M | M.det()

Naturally, some operations carry restrictions on the sizes of the operants (e.g.
matrix multiplication). An exception will be thrown if invalid operations are found
in run-time for dynamic-size matrix, while the compiler will complain about the
invalid operation for fixed-size ones.

This table does not contain all the implemented operators, for all the details
please refer to:

• mrpt::math

• mrpt::math::CMatrixTemplateNumeric<T>

http://reference.mrpt.org/svn/namespacemrpt_1_1math.html
http://reference.mrpt.org/svn/classmrpt_1_1math_1_1_c_matrix_template_numeric.html

40 CHAPTER 7. LINEAR ALGEBRA

Other methods which may be easy to remember to those programmers famil-
iarized with MATLAB are:

• M.ones(A,B) : Generates a A×B matrix of ones.

• M.zeros(A,B) : Generates a A× B matrix of zeroes.

• M.unit(A) : The A×A unity matrix.

• size(M,1) : Number of rows in M , equivalent to M.getRowCount().

• size(M,2) : Number of columns in M , equivalent to M.getColCount().

• v=linspace(a,b,N) : Generates a vector v with N elements in the range
[a, b].

• mean(v), stddev(v) : Mean and standard deviation of the vector v. There
is also a combined meanAndStd(...).

• cumsum(v) : Cumulative sum of vector v.

• histogram(v,...) : Histogram of a vector. See reference documentation.

As an example of the operators described so far, the equation

R = H · C ·H⊤

can be implemented with the next code fragment:

CMatrixDouble C(3 ,3);

CMatrixDouble H(5 ,3);

// C=diag ([1 2 3])

C(0,0) = 1;

C(1,1) = 2;

C(2,2) = 3;

// randomize matrix

mrpt :: random :: matrixRandomUni(H , -1.0 ,1.0);

CMatrixDouble R = H * C * (~H);

However, this operation, like many others have specialized methods which much
better performance. These common expressions should be known to take advantage
of them, hence they are summarized in the next section.

7.4 Optimized matrix operations

Many common operations with matrices have efficient implementations, as summa-
rized in Table ??. In the table M,A,B,C represent matrices while v, w are vectors
and x is a scalar. All these elements must be of the appropriate sizes for the cor-
responding operations to make sense. For clarity, some terms in the “operation”
column are represented in MATLAB notation.

7.5. TEXT OUTPUT 41

Operation Efficient implementation Remarks

M = M + A⊤ M.add_At(A)

M = M + A+ A⊤ M.add_AAt(A) A square
M = AB⊤ M.multiply_ABt(A,B)

M = AA⊤ M.multiply_AAt(A)

M = A⊤A M.multiply_AtA(A)

w = Ab A.multiply_Ab(b,w)

w = A⊤b A.multiply_Atb(b,w)

M = AB M.multiply_result_is_symmetric(A,B) AB symmetric
M = ABA⊤ A.multiply_HCHt(B,M) B symmetric
M = M + ABA⊤ A.multiply_HCHt(B,M,false,0,true) B symmetric
x = ABA⊤ A.multiply_HCHt_scalar(B) B sym., result 1x1
M = ABC M.multiply_ABC(A,B,C)

M = ABC⊤ M.multiply_ABCt(A,B,C)

M = AB(r0 : end, c0 : (c0 + c)) A.multiply_SubMatrix(B,M,c0,r0,c)

M = A−1 A.inv_fast(M) Contents of A are lost
sum(A(:)) M.sumAll()

7.5 Text output

7.6 matrices manipulation

7.6.1 Extracting a submatrix

For example, the following MATLAB statement:

A = C(6 : 8, 7 : 8);

becomes:

CMatrixDouble C(10 ,10);

CMatrixDouble A(3 ,2); // Set to the size of the patch to extract

C.extractMatrix(5,6,A)

Notice again how in MATLAB the first elements are referenced as 1 while in
MRPT they have 0 as index.

7.6.2 Extracting a vector from a matrix

Extracting a column, for example v = C(:, 3), can be implemented with:

CMatrixDouble C(10 ,10);

vector_double v;

C.extractCol (2,v);

And equivalently for rows, for example v = C(4, :):

CMatrixDouble C(10 ,10);

vector_double v;

C.extractRow (5,v);

42 CHAPTER 7. LINEAR ALGEBRA

7.6.3 Building a matrix from parts

A matrix can be also built from its 4 parts, such as:

M =

(

A B
C D

)

with:

CMatrixDouble M;

M. joinMatrix (A,B,C,D);

Many other methods exist (please, see the reference for further details) with self-
explaining names: insertRow, appendRow, insertCol, insertMatrix (for inserting
a submatrix in a larger matrix), etc.

7.7 Matrix decomposition

8
Mathematical algorithms

8.1 Fourier Transform (FFT)

8.2 Statistics

Mean, std, meanAndStd.

8.3 Spline interpolation

8.4 Spectral graph partitioning

8.5 Quaternions

8.6 Geometry functions

8.7 Numeric Jacobian estimation

43

44 CHAPTER 8. MATHEMATICAL ALGORITHMS

9
3D geometry

9.1 Introduction

9.2 Homogeneous coordinates geometry

9.3 Geometry elements in MRPT

9.3.1 2D points

9.3.2 3D points

9.3.3 2D poses

9.3.4 3D poses

45

46 CHAPTER 9. 3D GEOMETRY

y

x

Figure 9.1: A point in 2D.

9.3. GEOMETRY ELEMENTS IN MRPT 47

y

x

Figure 9.2: A pose in 2D.

z

x

y

Yaw

(1st)

Pitch

(2nd)

Roll

(3rd)

Arrow indicates

positive direction

Figure 9.3: A pose in 3D.

48 CHAPTER 9. 3D GEOMETRY

10
Serialization

10.1 The problem of persistence

Serializing consists of taking an existing object and converting it into a sequence
of bytes, in any given format, such as the contents and state of the object can be
afterward reconstructed, or deserialized.

10.2 Approach used in MRPT

There are many C++ libraries for serializing out there (e.g. boost), although
MRPT uses a simple, custom implementation with the following aims:

1. Simplicity: A few and small core functions only.

2. Versioning: If a class changes along time (something really common), a
new version number will be assigned to its serialization, but old stored data
can be still imported.

3. C++ compiler independence: Use only standardized data-lengths. For
example, a data of type ”int” has different lengths depending on the machine,
thus it is not allowed to serialize an ”int” variable without forcing it to a
known length.

Currently, the only supported format for serialization is binary, i.e. there is
no support for XML. The reason is that, for robotic applications, it is typically
more important to save data size (and transmission times) between a running,

49

50 CHAPTER 10. SERIALIZATION

Class name

length (N)

Class name

(without final '\0‘)

1 byte N bytes

Serialization

version

1 byte

Object data
End flag

0x88

1 byte

1

MSB LSB

Figure 10.1: The binary format of serialized objects in MRPT.

real-time system. The actual binary frame for each serialized object is sketched in
Figure 10.11.

When an object is serialized, its contents are written to a generic destination via
a CStream class. The list of currently implemented streams are (see the reference
of utils::CStream for more information).

The typical usage of serialization for storing an existing object into, for example,
a file, is to use the << operator of the CStream class:

include <mrpt/core.h>

using namespace mrpt;

using namespace mrpt ::slam;

using namespace mrpt ::math;

using namespace mrpt :: utils;

int main ()

{

// Declare serializable objects:

COccupancyGridMap2D grid;

CMatrix M(6 ,6);

// Do whatever...

// Serialize it to a file:

CFileOutputStream("saved.gridmap ") << grid << M;

return 0;

}

To restore a saved object, you can use two methods, depending of whether
you are sure about the class of the object which will be read from the stream,
or not. If you know the class of the object to be read, you can simply use the
¿¿ operator towards an existing object, which will be passed by reference and its
contents overwritten with those read from the stream. An example:

// Declare serializable objects:

COccupancyGridMap2D grid;

CMatrix M;

1In versions before MRPT 0.5.5 the end flag was not present and the first and third
fields were 4 bytes wide (instead of just 1). However, data saved in the old format can be
still loaded without problems.

http://reference.mrpt.org/stable/classmrpt_1_1utils_1_1_c_stream.html

10.3. RUN-TIME CLASS IDENTIFICATION 51

// Load from the file:

CFileInputStream("saved.gridmap ") >> grid >> M;

The other situation if when you don’t know the class of the object which will be
read. In this case it must be declared a smart pointer to a generic utils::CSerializable
object (initialized as NULL to indicate that it is empty), and after using the >>

operator it will point to a newly created object with the deserialized object:

// Declare serializable objects:

CSerializablePtr obj; // NULL pointer

// Load from the file:

CFileInputStream("saved.gridmap ") >> obj;

std :: cout << "Object class:" << obj -> GetRuntimeClass()-> className ;

The next section explains the most important methods of utils::CSerializable
and runtime class information. In the case of loading objects of unknown class, it
is important to read the MRPT registration mechanism and when you should call
it manually.

Note that these code examples do not catch potential exceptions.
Apart from using the operators << and >> over a utils::CStream, there are two

independent functions, utils::ObjectToStringand utils::StringToObject, which
serialize and deserialize, respectively, an object into a standard STL string (std::string).
The difference of these functions with serialization over normal CStream’s is that
the binary data stream is encoded to avoid null characters (’\0’), such as the re-
sulting string can be passed as a char *. Avoid using these functions but when
strictly necessary, since they introduce an additional processing delay.

10.3 Run-time class identification

All serializable classes must inherit from the virtual class utils::CSerializable, which
provides standard methods to manage any serializable object without knowing its
real class. The most common operation is probably to check whether an object is
of a given type, which can be performed by:

CSerializablePtr obj;

stream >> obj ;

// Test if "obj" points to an object of class "CMatrix".

if (IS_CLASS (obj ,CMatrix))

// Or (old format):

if (obj -> GetRuntimeClass() == CLASS_ID (CMatrix))

If the class to test is not in the current namespace (and there is not a using namespace NAMESPACE;),
you can alternatively use CLASS_ID_NAMESPACE, for example:

if (obj -> GetRuntimeClass() == CLASS_ID_NAMESPACE(CMatrix , UTILS)) ...

52 CHAPTER 10. SERIALIZATION

The method CSerializable::GetRuntimeClass() actually returns a pointer to a
UTILS::TRuntimeClassId data structure, which contains other useful members:

1. The class name as a string:

obj -> GetRuntimeClass()-> className ;

2. Checking whether a class is a descendent of a given virtual class. An example:

void func(CMetricMap * aMap)

{

if (IS_DERIVED (aMapCPointsMap))

{

CPointsMap *pMap = (CPointsMap *) aMap;

}

}

Other useful method of any serializable object is CSerializable::duplicate, which
makes a copy of the object. The internal data, pointers, etc... will be really
duplicated and the original object can be safely deleted.

10.4 Writing new serializable classes

10.5 Serializing STL containers

MRPT supports serializing arbitrarily complex data structures mixing STL con-
tainers, plain data types and MRPT classes. For example:

std :: multimap <double ,std ::pair <CPose3D , COccupancyGridMap2D > > myVar;

file << myVar;

The code above will compile and work without the need of the user to write
any extra code for the multimap<> type.

In the case of STL containers, the binary format consists on:

• The dump of a std::string with the STL container name (dumped using the
serialization format explained above).

• The dump of the strings representing each of the types kept by the container
(the key and value for a map, the values for a list, etc...).

• The number of elements in the container (for all containers but std::pair).

• The recursive dump of each of the elements. Here the same may apply if
the elements are STL containers. For normal MRPT classes, the format
explained above is used here.

11
Smart Pointers

11.1 Overview of memory management

Variables, objects (that is, instantiations of classes) and arrays are the typical
kinds of data managed by any program. Dynamic data on virtually all computer
architectures, but some embedded systems, can be allocated into memory in two
very different places: in the stack or in the heap.

Stack allocation is always preferred unless there are specific reasons not to use Stack memory

it. This technique implies a very efficient memory reservation method, typically just
subtracting a fixed number to the stack pointer register when calling a function.
Correspondingly, freeing memory becomes an addition to the same register. It is
hard to imagine a more efficient way to handle the reservation of local memory
needed in any function or class method. Below follow some examples of stack
allocation:

void bar ()

{

int counter ;

MyClass obj1 , obj2;

double numbers [100];

...

}

On the other hand, we have heap allocation, also known as dynamic memory, Heap memory

where the program must make a request to the operative system to allocate a cer-
tain amount of memory on the heap space (the program’s reservoir of memory
space). These requests may take some time since a gap large enough must be
found and problems such as memory fragmentation must be avoided by the alloca-

53

54 CHAPTER 11. SMART POINTERS

tion algorithm, which must also handle explicit requests from the program to free
the non-needed allocated blocks. The equivalent to the example above with heap
allocation would be:

11.1. OVERVIEW OF MEMORY MANAGEMENT 55

void bar ()

{

int *counter = new int[1];

MyClass *obj1 = new MyClass (), *obj2 = new MyClass ();

double *numbers = new numbers [100];

...

delete [] counter ;

delete obj1;

delete obj2;

delete [] numbers ;

}

Although the efficiency of heap allocation is far poorer than reserving on the
stack, there are three main reasons to employ the former under some circumstances:
(i) memory allocation on the stack is typically limited to a few Megabytes, thus
large memory blocks should be heap allocated, (ii) when the amount of memory
is unknown at compile time and (iii) when the variables are intended to still exist
when the program goes out of the creation scope.

As an illustrative example, refer to the following three functions which are
intended to return a newly created object:

// Returning by value

MyClass function1 ()

{

MyClass obj; // Stack alloc

...

return obj;

}

// Returning a pointer (WRONG ! DON’T DO THIS)

MyClass * function2 ()

{

MyClass obj; // Stack alloc

...

return &obj;

}

// Returning a pointer (Correct)

MyClass * function3 ()

{

MyClass *obj = new MyClass (); // Heap alloc

...

return obj;

}

If we analyze the three alternatives, we found that the first and third versions
are perfectly valid but quite different in their inner workings: while the caller to
the first function must make a copy of the returned object, the third one will have
to copy just a pointer value – obviously, the fastest solution. Regarding the second
alternative function2, note that the pointer will be invalid out of the scope of the
function (it points to the stack space of the function), thus accessing the returned
pointer would lead to undefined behavior, most likely a segmentation fault. To

56 CHAPTER 11. SMART POINTERS

sum up, returning pointers is the fastest way to return objects, but in that case the
memory must be dynamic, that is, reserved on the heap.

At this point we have established that, in some cases, pointers to objects al-
located in the heap are the most efficient mechanism to transfer objects between
different functions (or even threads) within one program. Now it must be high-
lighted the fundamental risk of this idea: memory allocated dynamically must be
freed by means of explicit requests by the program. As the complexity of an appli-
cation grows, it becomes increasingly difficult to keep track of how many pointers,
possibly distributed throughout different threads, refer to the same object, with
the idea of requesting its deletion only after the destruction of the last reference to
the object.

Here is where the concept of smart pointers gets into the scene. A smart pointerSmart pointers

is actually an object itself, but behaves as if it were a plain pointer but has the nice
property of automatically and transparently maintaining a counter with the number
of active references, or aliases, to the object. Only when the counter reaches zero,
the dynamically-allocated object is freed.

Smart pointers in MRPT are based on the wonderful implementation provided
by the STLplus C++ Library Collection [11] due to its versatility, clean interface
and proven robustness1. Next sections describe how to use these smart pointer
classes correctly.

1The only modification to the original STLplus in MRPT is the replacement of the
reference counter by a thread-safe atomic counter.

11.2. CLASS HIERARCHY 57

11.2 Class hierarchy

Smart pointers are introduced in MRPT mainly by means of the smart pointer class
CObjectPtr, which represents a pointer to objects of type CObject (both defined
in namespace mrpt::utils in the library mrpt-base).

Most MRPT classes subject to be frequently allocated as dynamic memory
inherit from CObject. In parallel to that hierarchy of classes, a set of MRPT
macros automatically define another hierarchy of smart pointer classes, one for each
“normal” class. As a naming convention, names of smart pointer classes are built
by adding the postfix Ptr to the original class name, as illustrated in Figure 11.1.

(a) Hierarchy of classes (b) Hierarchy of smart-pointer classes

Figure 11.1: For each class in the hierarchy of classes (left) there is an associated
smart pointer class (right).

A useful built-in functionality of MRPT smart pointers is that copy constructors
exist to convert between any two different smart pointer classes. Those construc-
tors check, at runtime, the validity of the intended transformation. An incorrect
assignment will raise an exception upon execution. The following example illus-
trates this feature, assuming the hierarchy of class defined in the previous figure
(the Create() method is explained in the next section):

CTrianglePtr ptrTri = CTriangle :: Create (); // Create new object

CPolygonPtr ptrPoly = CPolygonPtr (ptrTri); // Correct

CPentagonPtr ptrPent = CPentagonPtr(ptrPoly); // Incorrect

CTrianglePtr ptrTri2 = CTrianglePtr(ptrPoly); // Correct

Finally, it is very important to remark once again that smart pointers act like
pointers but actually are objects themselves. Therefore, both the dot and arrow
operators can be used on them but with quite different intentions:

CTrianglePtr ptrTri = CTriangle :: Create (); // Create new object

ptrTri -> method (); // Invoke method () of the CTriangle class

ptrTri .method (); // Invoke method () of the smart pointer class

58 CHAPTER 11. SMART POINTERS

11.3 Handling smart pointers

11.3.1 The Create() class factory

For each MRPT class CFoo with associated smart pointer CFooPtr, a static method
exists implementing a smart pointer factory. These methods are something equiv-
alent to:

class CFoo

{

public :

static CFooPtr Create () { return CFooPtr (new CFoo ()); }

};

Put in words, this method creates a new (dynamically allocated) instance of
the type CFoo and immediately assigns its memory management to a smart pointer
of type CFooPtr, which from that moment on is the interface for the programmer
to access the actual object. The process is sketched in Figure 11.2.

Figure 11.2: The construction of a new object and an associated smart pointer by
means of the Create() static method.

11.3. HANDLING SMART POINTERS 59

11.3.2 Testing for empty smart pointers

Unlike standard pointers, there is no need to initially set smart pointers to a NULL

value to mark them as invalid : the default internal state of the smart pointer already
is “NULL valued”-like and behaves accordingly by means of the ! operator:

CFooPtr a;

if (!a)

{

// This code WILL be executed , since "a" is empty .

}

CFooPtr b = CFoo:: Create ();

if (!b)

{

// This code WILL NOT be executed , "b" points to an object .

}

Alternatively, the method present() returns true if the smart pointer actually
points to an object:

CFooPtr a;

if (a.present ())

{

// This code WILL NOT be executed , since "a" is empty .

}

CFooPtr b = CFoo:: Create ();

if (b.present ())

{

// This code WILL be executed , "b" points to an object .

}

60 CHAPTER 11. SMART POINTERS

11.3.3 Making multiple aliases

After creating a smart pointer, an arbitrary number of copies can be made from it,
and all of them will be aliases of one single object in memory. For instance, after
these instructions:

CFooPtr a = CFoo:: Create (); // Create object

CFooPtr b = a; // Make a new alias

the actual memory layout would be like:

Figure 11.3: Copying smart pointers become increasing the number of aliases to
the same object.

The copy is very efficient, and totally independent of the complexity of CFoo.
Notice how, after the copy, the aliases counter is now increased to two. Therefore,
just like when using plain pointers, both a-> and b-> actually dereference to exactly
the same memory address.

If we consider now what happens after the program gets out of the scope where
the first smart pointer a was created, we arrive to the situation of Figure 11.4,
where the aliases counter is back again to one.

Figure 11.4: The number of aliases automatically decreases with each smart
pointer variable that is no longer used.

11.3. HANDLING SMART POINTERS 61

11.3.4 The clear() method

There exists a method in all smart pointers named clear() which deletes the
physical object the smart pointer refers to, replacing it by a NULL pointer. As
illustrated in Figure 11.5, this operation affects all other aliases:

Figure 11.5: Deleting an object affects all existing aliases.

As an illustrative example, consider the following code fragment:

CFooPtr a = CFoo:: Create (); // Create object

CFooPtr b = a; // Make a new alias

b.clear ();

if (!b)

{

// This code WILL be executed since "b==NULL"

}

if (!a)

{

// This code WILL be executed since "a==NULL"

}

62 CHAPTER 11. SMART POINTERS

11.3.5 The clear unique() method

In contrast to the previous method, one may want in some situations to free just one
alias, without affecting the others. This is done with the clear unique() method:

Figure 11.6: The clear unique() method clears just the referred alias.

11.3.6 The make unique() method

In this case, the affected aliases become independent of the others and a copy is
made of the pointed object, as shown in the following figure:

Figure 11.7: Effects of the make unique() method.

11.3. HANDLING SMART POINTERS 63

11.3.7 Creating from dynamic memory

Apart from the Create() class factory mentioned above, a smart pointer can be
associated to a plain pointer at any given instant by means of the smart pointer
class constructor. For instance, in

CFoo *obj = new CFoo (...);

CFooPtr a(obj);

the smart pointer a now holds the pointer to the object obj, and the programmer
should not issue an delete obj; since the smart pointer is the one now in charge
of freeing that memory.

11.3.8 Never create from stack-allocated memory

Unlike in the previous case, which was perfectly valid, don’t ever try to associate a
smart pointer to a local variable allocated in the stack, such as in:

CFoo obj ;

CFooPtr a(&obj); // Don’t ever try this.

It is clear that the smart pointer will eventually try to issue a delete on the
object which was not actually dynamically allocated, which will for sure lead to an
“invalid free” memory error.

64 CHAPTER 11. SMART POINTERS

12
Images

12.1 The central class for images

The main class for image storage is CImage, which internally fully relies on the IPL
format and OpenCV functions for memory management, format conversions, file
I/O, etc. Basically, it is a wrapper for OpenCV C library functionality with the
more attractive appearance of a C++ class and extended with many MRPT-specific
algorithms.

12.2 Basic image operations

12.3 Feature extraction

12.4 SIFT descriptors

65

66 CHAPTER 12. IMAGES

13
Rawlog files (datasets)

This chapter describes the two formats for datasets in MRPT’s binary format, called
“rawlogs”. Many existing formats can be imported as rawlogs due to its versatility
to cope with a wide range of robotic sensors (see the chapter on Observations for
more details).

Rawlog files are the input of many MRPT applications for off-line processing.
The application RawlogViewer incorporates several tools to visualize and manipu-
late these files.

13.1 Format #1: A Bayesian filter-friendly file
format

13.1.1 Description

The purpose of a rawlog file is to reflect as accurately as possible all the data
gathered by a robot as it moves through an environment, autonomously or manually
guided.

Under the perspective of Bayesian SLAM methods, these data are divided in
two clearly differentiated groups: actions, and observations, denoted typically as
uk and zk in the literature, respectively.

Hence, to ease the implementation of Bayesian methods in MRPT, a rawlog
file is divided in a sequence of actions, observations, actions, observations,
... ”Actions” typically include robot motor actuations (odometry), but any kind
of user-defined actions can be defined as well (e.g. robot arm actuations). ”Obser-
vations” include readings from the rest of robotic sensors: laser scanners, images

67

68 CHAPTER 13. RAWLOG FILES (DATASETS)

from cameras, sonar ranges, etc.
Note that the intention of grouping several observations between two consecu-

tive actions is to assure they are gathered approximately at the same time, although
each individual observation has its own timestamp.

13.1.2 Actual contents of a ”.rawlog” file in this format

A rawlog file is a binary serialization of alternating objects of the classes:

• CActionCollection, one or more actions (e.g. odometry), and

• CSensoryFrame, which stores the observations.

The serialization mechanism of MRPT is explained in Chapter 10.

13.2 Format #2: An timestamp-ordered sequence
of observations

13.2.1 Description

While the previous format is really well-suited for Bayesian approaches with clearly
separate steps of process action-process observation, in the case of complex datasets
with many different sensors, working at different rates, and possibly without odom-
etry (the typical ’action’ in SLAM algorithms), it is more clear to just store datasets
as an ordered list of observations.

13.2.2 Actual contents of a ”.rawlog” file in this format

In this case, the rawlog file is a binary serialization of objects derived from the
class slam::CObservation. In this case, odometry (if present) is also stored as an
observation. The serialization mechanism of MRPT is explained in Chapter 10.

The applications RawLogViewer, rawlog-grabber, and the class slam::CRawlog
all support both rawlog formats.

13.3 Compression of rawlog files

Since MRPT 0.6.0 all rawlog files are transparently compressed using the
gzip algorithm. The compression level is set to ’minimum’ to reduce as much
as possible the computational load, while still deflating file sizes to approximately
33%.

If compatibility with old versions is required, the files can be renamed to
.rawlog.gz, then decompressed using standard tools. To enable compressed in-
put/output in your code, replace the stream classes by their gzip equivalents:

• CFileInputStream→ CFileGZInputStream

• CFileOutputStream→ CFileGZOutputStream

http://reference.mrpt.org/svn/class_m_r_m_l_1_1_c_action_collection.html
http://reference.mrpt.org/svn/class_m_r_m_l_1_1_c_sensory_frame.html
http://reference.mrpt.org/svn/classmrpt_1_1slam_1_1_c_observation.html
http://reference.mrpt.org/svn/classmrpt_1_1slam_1_1_c_rawlog.html

13.4. GENERATING RAWLOG FILES 69

13.4 Generating Rawlog files

This section describes the generic method to generate rawlog files from your own
source code, which is useful to transform existing datasets into the MRPT format,
or to capture online data from robotics sensors. The procedure to capture rawlogs
using BABEL modules [8, 7] is explained in the MRPT website. A standalone
application that grabs rawlogs from a set of robotic sensors is now also included
with MRPT, the program rawlog-grabber (see Section 3.4).

#include <mrpt/core.h>

using namespace mrpt;

using namespace mrpt:: utils ;

using namespace mrpt:: slam;

using namespace mrpt:: poses ;

int main()

{

CFileOutputStream f("my_dataset .rawlog ");

while (there_is_more_data)

{

CActionCollection actions ;

CSensoryFrame SF;

// Fill out the actions:

// ----------------------------------

CActionRobotMovement2D myAction ; // For example , 2D odometry

myAction . computeFromOdometry(...);

actions .insert (myAction);

// Fill out the observations:

// ----------------------------------

// Create a smart pointer with an empty observation

CObservation2DRangeScanPtr myObs = CObservation2DRangeScanPtr :: Create ();

myObs ->... // Fill out the data

SF.insert (myObs); // "myObs" will be automatically freed.

// Save to the rawlog file:

// --------------------------------

f << actions << SF;

};

return 0;

}

70 CHAPTER 13. RAWLOG FILES (DATASETS)

13.5 Reading Rawlog files

13.5.1 Option A: Streaming from the file

This is the preferred mode of operation in general: actions and observations are read
sequentially from the file, processed, freed, and so on. In this way only the required
objects are loaded in memory at any time, which is mandatory when managing
large datasets (e.g. containing thousands of embedded images). However, notice
that if images are stored externally the rawlog could be loaded at once without
problems.

A typical loop for loading a rawlog in this way is shown next:

CFileGZInputStream rawlogFile (filename); // "file.rawlog "

CActionCollectionPtr action ; // Smrt. pointer to actions

CSensoryFramePtr observations; // Smrt. pointer to observations

size_t rawlogEntry =0;

bool end = false ;

// Load action from rawlog :

while (readActionObservationPair (

rawlogFile ,

action ,

observations ,

rawlogEntry))

{

// Process action & observations

...

};

// Smart pointers will be deleted automatically.

13.5.2 Option B: Read at once

A rawlog file can be read as a whole using the class slam::CRawlog. Notice that
this may be impractical for very large datasets (several millions of entries) due to
memory requirements, but for mid-sized datasets it definitively is the easiest way
of loading rawlogs.

CRawlog dataset ;

dataset . loadFromRawLogFile(filename);

http://reference.mrpt.org/svn/classmrpt_1_1slam_1_1_c_rawlog.html

14
GUI classes

14.1 Windows from console programs

14.2 Bitmapped graphics

See mrpt::gui::CDisplayWindow.

14.3 3D rendered graphics

See mrpt::gui::CDisplayWindow3D.

14.4 2D vectorial plots

See mrpt::gui::CDisplayWindowPlots.

71

72 CHAPTER 14. GUI CLASSES

15
OS Abstraction Layer

15.1 Cross platform Support

To write cross-platform and cross-compiler code, we need a layer of functions that
act like a minimum set of services found on any OS and compiler. In MRPT, these
methods are concentrated in the namespace mrpt::system::os, and comprise a
range of different areas as enumerated next.

15.2 Function Areas

15.2.1 Threading

15.2.2 Sockets

15.2.3 Time and date

15.2.4 String parsing

15.2.5 Files

73

74 CHAPTER 15. OS ABSTRACTION LAYER

16
Probability density functions (pdfs)

16.1 Efficient pose sample generator

75

76 CHAPTER 16. PROBABILITY DENSITY FUNCTIONS (PDFS)

17
Random number generators

17.1 Generators

17.2 Multiple samples

77

78 CHAPTER 17. RANDOM NUMBER GENERATORS

18
Observations

18.1 The generic interface

18.2 Implemented observations

18.2.1 Monocular images

18.2.2 Stereo images

79

80 CHAPTER 18. OBSERVATIONS

CObservationImage

Reference system on the camera:

CPose3D cameraPose;

z

x

y

Robot on-board

reference system

z

x

y

Focal point
Image plane

Figure 18.1: Representation of single camera observations.

CObservationStereoImages

Reference systems related to both cameras:

CPose3D cameraPose;

z

x

y

Robot on-board

reference system

z

x

y

Left camera’s

focal point
Left image plane

LEFT CAMERA

z

x

y

Right image plane

RIGHT CAMERA

Right camera’s

focal point

CPose3D rightCameraPose;

(It can be any 3D relation, it does

not need to be at the “right”)

Figure 18.2: Representation of stereo image observations.

19
Metric map classes

19.1 The generic interface of maps

All metric maps in MRPT have a common interface to ease polymorphism and
generic programming. The base class is mrpt::slam::CMetricMap. All the map
classes are within the namespace mrpt::slam, which is omitted in the rest of the
chapter for readability.

We review next only the most important methods of this interface:

bool insertObservation (

const CObservation *obs ,

const CPose3D *robotPose =NULL)

By invoking this method, the map will be updated from the new information
provided by the passed observation. It is important to remark that not all the
maps can process all the kinds of observations. The returned boolean value actually
indicates whether the map was affected by the observation. For example, inserting
a 2D laser scan in an occupancy grid map will update it, while an observation of
gas concentrations will not.

For most kinds of maps, it is crucial to provide a second argument with the
location of the robot when the observation was taken from. Notice that the relative
position of the sensor with respect to the robot is already taken into account during
the process of updating the map, that is, the same robotPose must be used for a
robot carrying three different laser scanners, as long as the location of each sensor
is correctly annotated within the corresponding observation objects.

double computeObservationLikelihood (

const CObservation *obs ,

81

http://reference.mrpt.org/svn/classmrpt_1_1slam_1_1_c_metric_map.html

82 CHAPTER 19. METRIC MAP CLASSES

const CPose3D &takenFrom)

This important method evaluates the log-likelihood of a given observation, con-
ditional to the robot being at the given location in map coordinates. If a given map
have no way to infer any sensible value for the likelihood (e.g. a visual landmark
map queried for the likelihood of a laser scanner), an arbitrary constant value will
be returned. This method is at the core of most Bayesian approaches to particle
filtering-based localization and mapping.

void saveMetricMapRepresentationToFile (

const std :: string &filNamePrefix) const

Useful for debugging, this method dumps one or several files with different
representations of the map.

19.2 The “multi-metric map” container

The most powerful tool when dealing with metric maps is an especial kind of map:
the “multi-metric map”. This class offers the interface of a normal metric map, but
it holds internally an arbitrary number of other metric maps.

To realize of the potential and simplicity of this approach, imagine programming
a method which inserts scans from 3 laser range finders into a 3D point map (so,
a point cloud is built incrementally). By just replacing the point map by a multi-
metric map, we can now build the point cloud and, at our choice, three occupancy
grid maps, once for each height. The original code would need no changes at all.

This is the reason of calling the MRPT map model hierarchical, in the sense
that one map (the multi-metric map) propagates all the calls to the child maps.

19.3 Implemented maps

1. The generic map container: Multi-metric map. Implemented in the class
CMultiMetricMap.

2. Beacon maps. A map of 3D beacons with an ID, used for range-only local-
ization and SLAM. Implemented in CBeaconMap.

3. 2D gas concentration maps. A planar lattice of gas concentrations, used for
gas concentration mapping. See the class CGasConcentrationGridMap2D.

4. 2D height (or elevation) maps. A lattice where each cell keeps the average
elevation (”z” coordinate) of the points sensed within its square area. See
the class CHeightGridMap2D.

5. Landmark maps. A set of 3D landmarks with IDs and a 3D Gaussian dis-
tribution for its position. Used mainly for visual SLAM. Implemented in
CLandmarksMap.

http://reference.mrpt.org/svn/classmrpt_1_1slam_1_1_c_multi_metric_map.html
http://reference.mrpt.org/svn/classmrpt_1_1slam_1_1_c_beacon_map.html
http://reference.mrpt.org/svn/classmrpt_1_1slam_1_1_c_gas_concentration_grid_map2_d.html
http://reference.mrpt.org/svn/classmrpt_1_1slam_1_1_c_height_grid_map2_d.html
http://reference.mrpt.org/svn/classmrpt_1_1slam_1_1_c_landmarks_map.html

19.4. CONFIGURATION BLOCK FOR A MULTI-METRIC MAP 83

6. Occupancy grid maps. A planar occupancy grid map. Occupancy probabil-
ities are kept as log-odds for a better dynamic range in the possible values
of each cell. It is used in many SLAM and particle filter-based localization
programs. See the class COccupancyGridMap2D.

7. Point maps. A virtual class for maps of 2D or 3D points. It implements
efficient look-up methods based on KD-trees. The derived classes are: KD-tree look-up

is built-in in
all point maps.(a) Simple point maps. A type of point map where each point only have

(x,y,z) coordinates. See CSimplePointsMap.

(b) Colored point maps. A type of point map where each point have (x,y,z)
coordinates, plus RGB color data. Implemented in CColouredPointsMap.

19.4 Configuration block for a multi-metric map

Typically, all the parameters to configure a multi-metric map can be loaded from
a INI-like configuration file (or any other textual input, such as an input box in a
GUI). Of course, they can be also hard-coded.

The key structure to use here is TSetOfMetricMapInitializers. The format of
the configuration files is explained in the reference documentation of:

• TSetOfMetricMapInitializers::loadFromConfigFile.

For practical examples of use, refer also to the INI files locate in the MRPT
packages at MRPT/share/mrpt/config_files/*.

http://reference.mrpt.org/svn/classmrpt_1_1slam_1_1_c_occupancy_grid_map2_d.html
http://reference.mrpt.org/svn/classmrpt_1_1slam_1_1_c_simple_points_map.html
http://reference.mrpt.org/svn/classmrpt_1_1slam_1_1_c_coloured_points_map.html
http://reference.mrpt.org/svn/classmrpt_1_1slam_1_1_t_set_of_metric_map_initializers.html
http://reference.mrpt.org/svn/classmrpt_1_1slam_1_1_t_set_of_metric_map_initializers.html

84 CHAPTER 19. METRIC MAP CLASSES

20
Probabilistic Motion Models

20.1 Introduction

Within a particle filter, the samples are propagated at each time step using some
given proposal distribution. A common approach for mobile robots is taking the
probabilistic motion model directly as this proposal.

In MRPT there are two models for probabilistic 2D motion, implemented in
mrpt::slam::CActionRobotMovement2D.

To use them just fill out the option structure motionModelConfiguration and
select the method in:
CActionRobotMovement2D::TMotionModelOptions ::modelSelection.

An example of usage would be like:

using namespace mrpt:: slam;

using namespace mrpt:: poses ;

CPose2D actualOdometryReading (0.20 , 0.05, DEG2RAD (1.2));

// Prepare the "options" structure:

CActionRobotMovement2D actMov ;

CActionRobotMovement2D :: TMotionModelOptions opts;

opts.modelSelection = CActionRobotMovement2D :: mmThrun ;

opts.thrunModel . alfa3_trans_trans = 0.10f;

// Create the probability density

// distribution (PDF) from a 2D odometry reading:

actMov . computeFromOdometry(actualOdometryReading , opts);

// For example , draw one sample from the PDF:

85

http://reference.mrpt.org/stable/classmrpt_1_1slam_1_1_c_action_robot_movement2_d.html
http://reference.mrpt.org/stable/structmrpt_1_1slam_1_1_c_action_robot_movement2_d_1_1_t_motion_model_options.html

86 CHAPTER 20. PROBABILISTIC MOTION MODELS

x

y

odo

x
∆

odo

y
∆

odo

φ∆

Previous robot pose

New robot pose

Odometry

increment:

Figure 20.1: Variables in the Gaussian motion model.

CPose2D sample ;

actMov .drawSingleSample(sample);

This chapter provides a description of the internal models used by these meth-
ods.

20.2 Gaussian probabilistic motion model

Assume the odometry is read as incremental changes in the 2D robot pose. The

odometry readings are denoted as
(

∆odo
x ∆odo

y ∆odo
φ

)

. The model for these variables

is depicted in Figure 20.1.
The equations that relate the prior robot pose (x y φ) and the new pose (x′ y′ φ′)

after the incremental change are: (based on the proposal in [6])

x′

y′

φ′

 =

x
y
φ

+

cos(φ+
∆odo

φ

2) − sin(φ+
∆odo

φ

2) 0

sin(φ +
∆odo

φ

2) cos(φ+
∆odo

φ

2) 0
0 0 1

∆odo
x

∆odo
y

∆odo
φ

Our aim here is to obtain a multivariate Gaussian distribution of the new pose,
given that the prior pose has a known value (it is the particle being propragated).

20.2. GAUSSIAN PROBABILISTIC MOTION MODEL 87

Figure 20.2: Simulation of a Gaussian motion model in RawlogViewer.

In this case we can just model how to draw samples from a prior pose of (0 0 0),
and then the samples can be composed using the actual prior pose.

Using this simplification:

x′

y′

φ′

 =

cos
∆odo

φ

2 − sin
∆odo

φ

2 0

sin
∆odo

φ

2 cos
∆odo

φ

2 0
0 0 1

∆odo
x

∆odo
y

∆odo
φ

 = H

∆odo
x

∆odo
y

∆odo
φ

The mean of the Gaussian can be simply computed from the composition of
the prior and the odometry increment. For the covariance, we need to estimate
the variances of the three variables of the odometry increment. We model them
as having independent, zero-mean Gaussian errors. The errors will be composed of
terms that capture imperfect odometry and potential drift effects.

We denote as Σ the diagonal matrix having the three variances of the odometry
variables, modeled as:

σ∆odo
x

= σ∆odo
y

= σmin
xy + α1

√

(∆odo
x)2 + (∆odo

y)2 + α2|∆odo
φ |

σ∆odo
φ

= σmin
φ + α3

√

(∆odo
x)2 + (∆odo

y)2 + α4|∆
odo
φ |

The default parameters (loaded in the constructor and available in RawLogViewer)
are:

88 CHAPTER 20. PROBABILISTIC MOTION MODELS

α1 = 0.05 meters/meter
α2 = 0.001 meters/degree
α3 = 5 degrees/meter
α4 = 0.05 degrees/degree

σmin
xy = 0.01 meters

σmin
φ = 0.20 degrees

And finally, the covariance of the new pose after the odometry increment (C)
is computed by means of:

C = J Σ J t

where J stands for the Jacobian of H.
An example of samples obtained using this model with the RawLogViewer

application is represented by Figure 20.2.

20.3. THRUN ET AL.’S BOOK PARTICLE MOTION MODEL 89

x

y

trans
δ

Previous

robot pose

New robot

pose

1rot
δ

2rot
δ

Figure 20.3: Variables in the particle-based motion model.

20.3 Thrun et al.’s book particle motion model

Like above, denote the odometry readings as
(

∆odo
x ∆odo

y ∆odo
φ

)

, and let’s assume

that the prior robot pose is (0 0 0), which means that we want to draw samples
of the robot increment, not the final robot pose (to simplify the equations without
loss of generality). Then, the new robot pose, which we want to draw samples from
is:

x′

y′

φ′

 =

cos δ̂rot1 0 0

sin δ̂rot1 0 0
0 1 1

δ̂trans
δ̂rot1
δ̂rot2

Where the variables correspond to the robot pose increment as is shown in
Figure 20.3.

Here, the variables δ̂trans, δ̂rot1 and δ̂rot2 are the result of adding a Gaussian,
zero-mean random noise to the actual odometry readings:

δ̂trans = δtrans + ǫtrans ǫtrans ∼ N (0, σ2
trans)

δ̂rot1 = δrot1 + ǫrot1 ǫrot1 ∼ N (0, σ2
rot1)

δ̂rot2 = δrot2 + ǫrot2 ǫrot2 ∼ N (0, σ2
rot2)

90 CHAPTER 20. PROBABILISTIC MOTION MODELS

Figure 20.4: Simulation of a particles motion model in RawlogViewer.

The model described in [12] employs the following approximations for the values
of the standard deviations required for the equations above:

σrot1 = α1|δrot1|+ α2δtrans
σtrans = α3δtrans + α4(|δrot1|+ |δrot2|)
σrot2 = α1|δrot2|+ α2δtrans

This is the model implemented in CActionRobotMovement2D when setting
”CActionRobotMovement2D::TMotionModelOptions::modelSelection” to ”mmThrun”.
Actually, a small additional error is summed to each pose component (x, y, φ) to
avoid that for a null odometry increment the movement for all the particles become
exactly zero, which may lead a particle filter to degenerate.

Figure 20.4 shows an example of samples generated using this model, for an
excessively large value of α2 (a very large ”slippage”), generated by the application
RawLogViewer.

http://reference.mrpt.org/stable/classmrpt_1_1slam_1_1_c_action_robot_movement2_d.html

21
Sensor Interfaces

This chapter describes the two parts in which classes of the library mrpt-hwdrivers
are divided: those providing the basis of communications (USB, serial), and the
sensors themselves.

21.1 Communications

21.1.1 Serial ports

Even nowadays, lots of devices offer serial ports (or embedded USB-to-serial con-
verters) as interfaces due to their simplicity of use. In MRPT, a serial port can be
managed with the class hwdrivers::CSerialPort. An example of usage would be
as follows:

#include <mrpt/ hwdrivers .h>

...

CSerialPort ser;

ser .setSerialPortName("ttyS0"); // or "COM3", ...

ser .setConfig (9600 /*baud */, 0 /*no parity */, 8 /*8 bit words */);

ser .open ();

if (!ser.isOpen ()) { // Report error }

ser .Read(...);

ser .Write (...);

ser .close (); // optional: it closes on destruction anyway

In addition, a serial port implements the generic CStream interface, thus it is
perfectly legal to transfer arbitrarily complex objects through a serial connection
as in:

COccupancyGridMap2D map;

91

92 CHAPTER 21. SENSOR INTERFACES

ser << map;

However, the most likely use of a serial ports is to send and receive short textual
messages, thus the most useful methods are Read and Write.

Names of serial ports

In Windows, serial ports appear with names COM1, COM2, COM3, COM4 and \\.\COMXX

for the rest. However, if you pass a name without the prefix \\.\ it will be added
automatically.

In Linux, a variety of names can be found such as ttyUSB0, ttyS0 or ttyACM0.
It is not required to provide the full path to the device (eg. /dev/ttyS0), as in
Windows, it will be added transparently.

As follows from above, always keep serial port names as strings, not only as a
number since it will be not enough in a cross-platform application.

Timeouts

Slight changes in the timeouts of your connection can be lead to random and hard
to debug errors with no apparent reason. The proper way of setting these delays is
through the method:

void CSerialPort :: setTimeouts (

int ReadIntervalTimeout ,

int ReadTotalTimeoutMultiplier ,

int ReadTotalTimeoutConstant ,

int WriteTotalTimeoutMultiplier ,

int WriteTotalTimeoutConstant)

where all the fields have the same meaning than in the Windows API1.

21.1.2 USB FIFO with FTDI chipset

21.2 Summary of sensors

1 Search for the COMMTIMEOUTS structure for details.

http://www.google.com/search?hl=en&q=COMMTIMEOUTS+msdn&btnI=I'm+Feeling+Lucky

21.3. THE UNIFIED SENSOR INTERFACE 93

21.3 The unified sensor interface

When implementing a new sensor class, the following execution flow must be kept
in mind:

1. Object constructor: Do here basic initialization only. Parameters are still not
set (see next step), thus communications must not be set up at this point.

2. CGenericSensor::loadConfig: Load here the parameters specific to your
sensor. Notice that the application rawlog-grabber automatically loads the
following parameters (common to all the sensors), thus they must be not
loaded at this point:

(a) “process rate”: The rate in Hertz (Hz) at which the sensor thread
should invoke ”doProcess”. Mandatory parameter.

(b) “max queue len”: The maximum number of objects in the observations
queue (default is 100). If overflow occurs, an error message will be issued
at run-time.

3. CGenericSensor::initialize: Initialize here your connections, send initial
commands to the device, etc.

4. CGenericSensor::doProcess: This method is called over and over again
while the application is running. Your code must not delay too much and
must always return, i.e. do not insert infinite loops. If a new piece of infor-
mation from the sensor is gathered (which may not always occur), use the
helper method CGenericSensor::appendObservation to add it to the “out-
put queue”. That is all rawlog-grabber expects from each sensor’s class.
Observations must be inserted in the list in the form of smart pointers (refer
to Chapter 11).

21.4 How rawlog-grabber works

94 CHAPTER 21. SENSOR INTERFACES

22
Kalman filters

22.1 Introduction

22.2 Algorithms

22.3 How to implement a problem as a KF

The example bayesianTracking.
A more complicated model, the problem of 6D SLAM, is discussed in detail in

[3] and implemented as the application kf-slam within MRPT.

95

96 CHAPTER 22. KALMAN FILTERS

23
Particle filters

23.1 Introduction

A good tutorial can be found in [1].

23.2 Algorithms

23.2.1 SIR

23.2.2 Auxiliary PF

23.2.3 Optimal PF

23.2.4 Optimal-rejection sampling PF

The method presented in the paper [4].

23.3 Resampling schemes

A common problem of all particle filters is the degeneracy of weights, which consists
in the unbounded increase of the variance of the weights ω[i] with time. In order to
prevent this growth of variance, which entails a loss of particle diversity, one of a
set of resampling methods must be employed. The aim of resampling is replacing
an old set of N particles by a new one with the same population but where particles
have been duplicated or removed according to their weights. More specifically, the
expected duplication count of the i’th particle, denoted by Ni, must tend to Nω[i].

97

98 CHAPTER 23. PARTICLE FILTERS

After resampling, all the weights become equal to preserve the importance sampling
of the target pdf.

In this section we briefly review four different strategies for resampling a set of
particles whose normalized weights are given by ω[i] for i = 1, ..., N . The methods
are explained using a visual analogy with a “wheel” whose perimeter is assigned to
the different particles in such a way that the length associated to the i’th particle
is proportional to its weight ω[i]. Therefore, picking a random direction in this
“wheel” implies choosing a particle with a probability proportional to its weight.
For a more formal description of the methods, please refer to the excellent paper
by Douc, Cappé and Moulines [5].

23.3. RESAMPLING SCHEMES 99

[1]
ω

[2]
ω

[3]
ω

[4]
ω [5]

ω

[6]
ω

Random

Figure 23.1: The multinomial resampling algorithm.

• Multinomial resampling: The most straighforward method, where N in-
dependent random numbers are generated to pick a particle from the old set.
In the “wheel” analogy, illustrated in Figure 23.1, this method consists of
picking N independent random directions.

The name of this method comes from the fact that the probability mass
function for the duplication counts Ni is the multinomial distribution with
the weights as parameters.

100 CHAPTER 23. PARTICLE FILTERS

[1]
ω[2]

ω

[3]
ω

[4]
ω

[5]
ω

[6]
ω

Random

[1]
ω

[2]
ω

[3]
ω

[4]
ω [5]

ω

[6]
ω

Figure 23.2: The residual resampling algorithm. The shaded areas represent the
integer parts of ω[i]/(1/N). The residual parts of the weights, substracting these
areas, are taken as the modified weights ω̃[i].

• Residual resampling: This method comprises of two stages. Firstly, parti-
cles are sampled deterministically by picking Ni = ⌊Nω[i]⌋ copies of the i’th
particle. Then, multinomial sampling is performed with the residual weights

ω̃[i] = ω[i] −Ni/N.

23.3. RESAMPLING SCHEMES 101

[1]
ω

[2]
ω

[3]
ω

[4]
ω [5]

ω

[6]
ω

Random

Random

Random

Random

Random

Random 1
N

Figure 23.3: The stratified resampling algorithm. The entire circunference is
associated to the range [0, 1] in the space of the particle weights, hence dividing it
into N equal parts is represented as N circular sectors of 1/N each.

• Stratified resampling: In this method, the “wheel” representing the old
set of particles is divided into N equally-sized segments, as represented in
Figure 23.3. Then, N uniform numbers are independently generated like
in multinomial sampling, but instead of mapping each draw to the entire
circunference, they are mapped to its corresponding partition.

102 CHAPTER 23. PARTICLE FILTERS

[1]
ω

[2]
ω

[3]
ω

[4]
ω [5]

ω

[6]
ω

1
N

1
N

1
N

1
N

1
N

1
N

Random

Figure 23.4: The systematic resampling algorithm.

• Systematic resampling: Also called universal sampling, this popular tech-
nique draws only one random number, i.e. one direction in the “wheel”, with
the others N − 1 directions being fixed at 1/N increments from the random
pick.

23.4 Implementation examples

Bibliography

[1] M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, D. Sci, T. Organ, and
SA Adelaide. A tutorial on particle filters for online nonlinear/non-Gaussian
Bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174–188,
2002.

[2] Several authors. The Player project, 2008.
http://playerstage.sourceforge.net/.

[3] J.L. Blanco. Derivation and Implementation of a Full 6D EKF-based Solution
to Bearing-Range SLAM. Technical report, 2008.

[4] J.L. Blanco, J. Gonzalez, and J.A. Fernández-Madrigal. An optimal filtering
algorithm for non-parametric observation models in robot localization. In
IEEE International Conference on Robotics and Automation (ICRA’08), pages
461–466, May 2008.

[5] R. Douc, O. Cappé, and E. Moulines. Comparison of resampling schemes for
particle filtering. In Proceedings of the 4th International Symposium on Image
and Signal Processing and Analysis, pages 64–69, 2005.

[6] A.I. Eliazar and R. Parr. Learning probabilistic motion models for mobile
robots. ACM International Conference Proceeding Series, 2004.

[7] Juan-Antonio Fernández-Madrigal. The babel development system for inte-
grating heterogeneous robotic software. Technical report, System Engineering
and Automation Dpt. - University of Málaga (Spain), July 2003.

[8] Juan-Antonio Fernández-Madrigal. The BABEL website, 2008.
http://babel.isa.uma.es/babel2/.

[9] Michael Montemerlo, Nicholas Roy, Sebastian Thrun, Dirk Haehnel, Cyrill
Stachniss, and Jared Glover. The CARMEN robot navigation toolkit, 2008.
http://carmen.sourceforge.net/.

[10] Paul Newman et al. The MOOS website, 2008.
http://www.robots.ox.ac.uk/ pnewman/TheMOOS/.

[11] Andy Rushton. The STLplus website, 2008.
http://stlplus.sourceforge.net/.

[12] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The MIT Press,
September 2005.

103

	I First steps
	Introduction
	Why a new library?
	What is MRPT?
	What is this book about?
	What is this book not about?
	How much does it cost?
	OS restrictions
	Robotic software architectures

	Compiling
	Binary distributions
	Prerequisites
	GNU/Linux
	Windows

	Compiling
	Building options

	II User guide
	Applications
	pf-localization
	Description
	Usage
	Example configuration file

	RawLogViewer
	Description
	Usage

	rbpf-slam
	Description
	Usage
	Example configuration file

	rawlog-grabber
	Description
	Usage
	Configuration files

	File formats

	III Programming guide
	The libraries
	Introduction
	Libraries summary
	mrpt-base
	mrpt-opengl
	mrpt-bayes
	mrpt-gui
	mrpt-obs
	mrpt-scanmatching
	mrpt-topography
	mrpt-hwdrivers
	mrpt-maps
	mrpt-vision
	mrpt-slam
	mrpt-reactivenav
	mrpt-hmtslam
	mrpt-detectors

	Your first MRPT program
	Source files
	The CMake project file
	Generating the native projects
	Compile
	Summary

	Linear algebra
	Matrices
	Declaration
	Fixed-size matrices
	Storage in files

	Vectors
	Declaration
	Resizing
	Storage in files

	Basic operations
	Optimized matrix operations
	Text output
	matrices manipulation
	Extracting a submatrix
	Extracting a vector from a matrix
	Building a matrix from parts

	Matrix decomposition

	Mathematical algorithms
	Fourier Transform (FFT)
	Statistics
	Spline interpolation
	Spectral graph partitioning
	Quaternions
	Geometry functions
	Numeric Jacobian estimation

	3D geometry
	Introduction
	Homogeneous coordinates geometry
	Geometry elements in MRPT
	2D points
	3D points
	2D poses
	3D poses

	Serialization
	The problem of persistence
	Approach used in MRPT
	Run-time class identification
	Writing new serializable classes
	Serializing STL containers

	Smart Pointers
	Overview of memory management
	Class hierarchy
	Handling smart pointers
	The Create() class factory
	Testing for empty smart pointers
	Making multiple aliases
	The clear() method
	The clear_unique() method
	The make_unique() method
	Creating from dynamic memory
	Never create from stack-allocated memory

	Images
	The central class for images
	Basic image operations
	Feature extraction
	SIFT descriptors

	Rawlog files (datasets)
	Format #1: A Bayesian filter-friendly file format
	Description
	Actual contents of a ".rawlog" file in this format

	Format #2: An timestamp-ordered sequence of observations
	Description
	Actual contents of a ".rawlog" file in this format

	Compression of rawlog files
	Generating Rawlog files
	Reading Rawlog files
	Option A: Streaming from the file
	Option B: Read at once

	GUI classes
	Windows from console programs
	Bitmapped graphics
	3D rendered graphics
	2D vectorial plots

	OS Abstraction Layer
	Cross platform Support
	Function Areas
	Threading
	Sockets
	Time and date
	String parsing
	Files

	Probability density functions (pdfs)
	Efficient pose sample generator

	Random number generators
	Generators
	Multiple samples

	Observations
	The generic interface
	Implemented observations
	Monocular images
	Stereo images

	Metric map classes
	The generic interface of maps
	The ``multi-metric map'' container
	Implemented maps
	Configuration block for a multi-metric map

	Probabilistic Motion Models
	Introduction
	Gaussian probabilistic motion model
	Thrun et al.'s book particle motion model

	Sensor Interfaces
	Communications
	Serial ports
	USB FIFO with FTDI chipset

	Summary of sensors
	The unified sensor interface
	How rawlog-grabber works

	Kalman filters
	Introduction
	Algorithms
	How to implement a problem as a KF

	Particle filters
	Introduction
	Algorithms
	SIR
	Auxiliary PF
	Optimal PF
	Optimal-rejection sampling PF

	Resampling schemes
	Implementation examples

