
Building Unix Squeak (>= 3.2) from source

Ian Piumarta

<ian.piumarta@squeakland.org>

Last edited: 2009-08-12 11:17:55 by piumarta on emilia.local

Translated to .ps/.pdf/.html/.txt: August 12, 2009

Contents

0 The easy way 2

1 The hard way:configure, build, install 3

2 Generating your own VM and plugin sources 4

2.1 How configure finds the src directory 5

3 Adding your own plugins 5

3.1 Plugin-specific configuration . 6

3.1.1 AC PLUGIN CHECK LIB(lib,func) 6

3.1.2 AC PLUGIN DEFINE UNQUOTED(keyword,text) 7

3.1.3 Plugin-specific variables 7

3.2 Plugin-specific Makefile declarations and rules 7

3.2.1 The anatomy of a plugin’s Makefile 7

3.2.2 A note about $(COMPILE) and $(LINK) commands 9

3.2.3 Specifying additional source directories 10

3.2.4 Including additional material in the default Makefile . . 10

3.2.5 Replacing the default Makefile entirely 10

3.3 Examples taken from existing plugins 10

3.3.1 Configuration . 11

3.3.2 Customising the Makefile 11

3.4 Coping with VMMaker quirks . 12

3.5 If all else fails . 12

1

Index 12

0 The easy way

Beginning with version 3.7-7, everything you need is included with the Unix
sources regardless of how you obtained them – either as a tarball or by repository
checkout. (This was done to eliminate frequent problems encountered by people
combining the repository Unix and Cross sources with a set of incompatible
generated sources.)

If you extract a tarball then you will have a top-level directory named Squeak-X.

Y-Z (for some values of X, Y, and Z). If you are checking out from a repository,
you can call the direcory anything you like; for example:

$ svn co http://squeakvm.org/svn/squeak/trunk squeak

will leave you with a directory called squeak. (We’ll assume from now on that
the directory is called squeak.)

Next change to the ’unix’ directory within the sources that you just checked out
(or extracted from the tarball):

$ cd squeak/platforms/unix

Build the VM and plugins by running make:

$ make

Then install the VM, plugins and manual pages by running make again (with
superuser privileges):

$ sudo make install

To delete the temporary files created during the build process, run make one
last time:

$ make clean

That’s all there is to it.

2

1 The hard way: configure, build, install

Unix Squeak is built using the (almost) universal “configure;make;makeinstall”.
If you haven’t come across this before, read on. . .

Create a build directory (which we will call ‘blddir’ from now on) and then
‘cd’ to it:

$ mkdir blddir

$ cd blddir

A convenient place is just next to the platforms directory, like this:

$ cd squeak

$ ls

platforms src ...

$ mkdir bld

$ cd bld

Create the build environment by running the script configure which lives in
the platforms/unix/config directory.

Note: The configure script accepts lots of options. To see a list
of them, run: ‘configure --help’

Assuming you’ve created the blddir next to platforms, this would be:

$../platforms/unix/config/configure

Note: This assumes that the VMMaker sources are in ‘../src’.
However, since the Unix Squeak support code is independent of the
image version from which VMMaker generated the interpreter/plugin
sources, it is possible that your source distribution comes with more
than one src directory (corresponding to more than one image ver-
sion used to generate the sources). In such cases you will have to
tell configurewhich source version to use, via the ‘--with-src’ op-
tion. For example, if there are two source directories called src-3.

2gamma-4857 and src-3.3.alpha-4881 then you would use one of
the following commands:

$.../configure --with-src=src-3.2gamma-4857

or

$.../configure --with-src=src-3.3alpha-4881

3

Build the VM and plugins by running make:

$ make

Note: If you want to build just the VM (without external plugins)
or just the external plugins (without the VM) then you can use:
‘make squeak’ or ‘make plugins’ respectively.

Finally install the VM, plugins and manual pages:

$ su root

$ make install

2 Generating your own VM and plugin sources

Generating your own VM/plugin sources might be necessary for various reasons:

• you want to change the mix of internal vs. external plugins

• you want to remove some plugins from the VM that you will never use

• you’ve pulled in some updates that modify the Interpreter or plugins

• you’ve filed-in (or written) a whole new plugin

• etc. . .

Version 3.2 (and later) of Unix Squeak use VMMaker to generate the core in-
terpreter and plugin sources.

Start Squeak in the top-level directory (the one containing the platforms di-
rectory); for example:

$ ls

src platforms ...

$ squeak MyCoolPlugin.image

Open a VMMakerTool and modify the setup to your liking.

Note: The VMMaker configuration used to build the distributions
of Unix Squeak is available in platforms/unix/config/VMMaker.

config.

Then click on the relevant “generate ...” button. You can now ‘configure;
make;makeinstall’ in your blddir (as described above).

4

Note: You only need to run configure once for a given blddir

(on the same host). If you modify the choice of plugins (or change
whether they’re internal/external) then you can update the build
environment by running the config.status script in the bldddir,
like this:

$ squeak MyCoolPlugin.image ... generate new sources ... $ cd

blddir $./config.status $ make

This is much faster than running configure all over again. (In fact,
make should detect any changes to the plugin configuration and re-
run config.status for you automatically.)

Note: ‘configure’ doesn’t actually create any files. The last
thing it does is run ‘config.status’ to create the configured files
in blddir from the corresponding file.ins in the unix/config di-
rectory. So in the remainder of this document the phrase ‘during
configuration’ means either when running ‘configure’ for the first
time or running ‘config.status’ to update an already configured
build environment.

2.1 How configure finds the src directory

Starting with version 3.7 configure looks in two places for the src directory,
in the following order, and uses the first one that it finds:

• the top-level directory (the one containing the platforms directory);

• the platforms/unix directory.

In other words, if you want to use your own generated sources without deleting
the built-in generated sources, generating them into a src directory next to
platforms (and then re-running configure) will do what you want.

3 Adding your own plugins

Note: This section is intended primarily for plugin developers.

If your plugin requires no platform-specific tweaks then there’s nothing for you to
do. configure (and config.status) will provide a default Makefile for it that
should work. If your plugin requires only platform-independent tweaks (and/or
additional hand-written code) then these go in platforms/Cross/plugins, and
there’s nothing for you to do (in Unixland).

On the other hand, if you require special configure tests or additional declara-
tions/rules in your plugin’s Makefile then you need to specify them explicitly.

5

Note: Unix Squeak subscribes to the following philopsophy:

Absolutely everything that is specific to Unix (sources, headers, configure
and Makefile extensions, etc.) lives under platforms/unix .

In other words: there is not (nor aught there be) any Unix-related
information under the platforms/Cross directory. (Unix Squeak is
entirely encapsulated under platforms/unix and is utterly immune
to “random junk” elsewhere in the platforms tree.)

First you must create a new directory under platforms/unix/plugins named
after your plugin. This directory will hold the files describing the additional
configuration checks and/or Makefile contents. For example, if your plugin is
called “MyCoolPlugin” then

$ mkdir platforms/unix/plugins/MyCoolPlugin

would be the thing to do. (The following sections will refer to this directory as
platdep since the full path is quite a mouthful of typing for my lazy fingers.)

3.1 Plugin-specific configuration

Your plugin can ask configure to run additional tests (and to set additional
variables in its output files) simply by including a file called acinclude.m4 in
it’s platdep directory.

Note: The configure script is ‘compiled’ from several other files. If
you create a ‘platdep./acinclude.m4’ file then you must ‘recom-
pile’ configure. You can do this by ‘cd’ing to unix/config and
running ‘make’, or (if you have GNU make) from the blddir like
this:

$ make -C ../platforms/unix/config

In addition to the usual autoconf macros, the following macros are available
specifically for Squeak plugins to use:

3.1.1 AC PLUGIN CHECK LIB(lib,func)

This is similar to the autoconf ‘AC_CHECK_LIB’ macro.

func is the name of a function required by the plugin, defined in the external
(system) library lib. The macro checks that the library is available (via ‘-llib ’)
and then adds it to the list of libraries required by the plugin (see the explanation
of [plibs] in Section 3.2.1 for a description of how library dependencies for
plugins are handled).

6

If func cannot be found in lib then the plugin will be disabled and a message
to that effect printed during configuration. (The VM can still be built, without
rerunning VMMaker or reconfiguring, and the plugin will simply be ommitted
from it.)

3.1.2 AC PLUGIN DEFINE UNQUOTED(keyword,text)

This is similar to the autoconf ‘AC_DEFINE_UNQUOTED’ macro.

keyword is a Makefile keyword (usually of the form ‘[name]’) and text is arbi-
trary text to be associated with it. Calling this macro causes mkmf to substitute
text for all occurrences of keyword in the Makefile generated for the plugin.

3.1.3 Plugin-specific variables

The following variables are also set during the execution of a plugin-specific
acinclude.m4:

${plugin} is the name of the plugin;

${topdir} is the path to the top-level directory (containing platforms);

${vmmdir} is the path to the VMMaker ‘src’ directory.

3.2 Plugin-specific Makefile declarations and rules

Three mechanisms are avilable for this:

1. scanning additional dirrectories for sources and headers;

2. including a few additional lines into the default Makefile; and

3. replacing entirely the default Makefile with a hand-written one.

(The last option isn’t as scary as it might sound: read on. . .)

3.2.1 The anatomy of a plugin’s Makefile

Before proceeding, let’s take a minute to understand how Unix Squeak compiles
and links files in its default Makefile for plugins. The default Makefile is
shown in Figure 1.

Note: The keywords appearing between ‘[square brackets]’ are
substituted during configuration by a preprocessor called ‘mkmf’ ac-
cording to the kind of plugin (internal/external) being built.

7

default Makefile for Unix Squeak plugins

[make_cfg]

[make_plg]

XINCLUDES = [includes]

OBJS = [targets]

TARGET = [target]

PLIBS = [plibs]

[make_inc]

$(TARGET) : $(OBJS) Makefile

$(LINK) $(TARGET) $(OBJS) $(PLIBS)

[make_targets]

.force :

Figure 1: Default Makefile “template” for plugins.

[make cfg] is the configured variable section. It contains the platform-specific
information gleaned by configure while it was figuring out which compiler you
have, what flags your linker needs, where to install stuff, and so on.

[make plg] contains a handful of definitions which depend on whether the plu-
gin is being compiled as internal or external:

o the extension for object files
a the extension for plugins
COMPILE the command to compile a source file into an object file
LINK the command to link one or more object files into a plugin

For internal plugins: $o is ‘.o’ and $a is ‘.a’. $(COMPILE) is the C compiler
(‘$(CC) ... -o’, so the first thing after the command must be the output
filename) and $(LINK) is archiver (‘ar -rc’, again requiring the output file to
follow immediately). Note that internal plugins are built as ‘ar’ archives before
being linked into the final binary.

For external plugins: $o is ‘.lo’, $a is ‘.la’, and $(COMPILE) and $(LINK)

are invocations of ‘libtool’ to create position-independent objects and shared
libraries (with a ‘-o’ appearing right at the end, so the first thing after the
command must be the output filename).

[includes] is a list of ‘-I\emph{dir}’ compiler flags, one for each of the di-
rectories

8

src/plugins/name src/vm/intplugins/name platforms/Cross/plugins/name

platforms/unix/plugins/name

in which at least one header file is present.

[targets] is a list of object files corresponding to the source (.c) files found in
the directories:

src/plugins/name/*.c src/vm/intplugins/name/*.c platforms/Cross/plugins/name/*.c

platforms/unix/plugins/name/*.c

where each source file has been stripped of the directory name and had the ‘.c’
converted into ‘$o’.

[target] is the name of the plugin, including the $a extension.

[plibs] is a list of zero or more libraries on which the plugin depends (as de-
tected using the macro AC PLUGIN CHECK LIB in the plugin-specific acinclude.
m4). If the plugin is being built internally then this list is empty and the re-
quired libraries are included in the final link command. If the plugin is being
built externally then the plugin itself (a shared object) is linked against these
libraries (via [plist]) rather than with the main VM binary.

(This is to ensure that a missing shared object needed by an external plugin
will only affect the operation of that plugin and not prevent the rest of the VM
from running, which would be the case if the entire VM were linked against it.)

[make inc] is the contents of the Makefile.inc file in your plugin’s platdep

directory (or empty if this file doesn’t exist).

[make targets] is a list of rules for building the files listed in [targets]. Each
rule looks like this:

name$o : original/source/dir/name.c

$(COMPILE) name$o original/source/dir/name.c

3.2.2 A note about $(COMPILE) and $(LINK) commands

You should never pass additional flags to these commands explicitly. This is
because you cannot know how they are defined. (Their definitions depend on
whether the plugin is being built internally or externally — and might even
change radically in future releases of Unix Squeak.)

Instead you should pass additional compiler/linker flags to these commands by
setting the following variables in ‘Makefile.inc’ or ‘Makefile.in’:

XCPPFLAGS ‘-I’ flags for cpp
XDEFS ‘-D’ flags for cpp
XCFLAGS anything to be passed to the compiler
XLDFLAGS anything to be passed to the linker

9

Note: ‘mkmf’ already uses ‘XINCLUDES’ to pass the list of directories
containing plugin header files to cpp. You can redefine it if you like,
but make sure that ‘[includes]’ appears in its definition (or in the
definition of ‘XCPPFLAGS’).

3.2.3 Specifying additional source directories

mkmf looks for a file in your plugin’s platdep directory called ‘mkmf.subdirs’.
If this file exists then it should contain a list of directory names relative to
the top-level directory (the one containing the src and platform directories).
These directories will be added to the list of locations searched for ‘.c’ and ‘.h’
files while constructing the substitutions for ‘[includes]’, ‘[targets]’ and
‘[make targets]’.

3.2.4 Including additional material in the default Makefile

If the file platdep/Makefile.inc exists then mkmf will substitute its contents
into the Makefile in place of the [make inc] keyword.

Note: Makefile.inc is read into the Makefile under construction
before mkmf performs substitutions on the ‘[keyword]’s. In other
words, your Makefile.inc can use the above keywords to include
relevant declarations and rules without worrying about whether the
plugin is internal or external.

3.2.5 Replacing the default Makefile entirely

If neither of the above are sufficient then you can create a complete Makefile

template called platdep/Makefile.in. mkmf will use this template instead of
the default Makefile template shown earlier, and will perform keyword substi-
tutions on it as described above to create the final Makefile. (In other words,
simply copying the default template shown earlier will result in a Makefile

identical to the one that mkmf would have produced by default.

3.3 Examples taken from existing plugins

By way of example we’ll look at how two existing plugins specialise their con-
figuration and Makefiles.

10

3.3.1 Configuration

The B3DAcceleratorPlugin requires OpenGL in order to compile. The file
unix/plugins/B3DAcceleratorPlugin/acinclude.m4 contains a single call to
an autoconf-style macro:

AC PLUGIN SEARCH LIBS(glIsEnabled, GL)

This works similarly to the autoconf ‘AC_SEARCH_LIBS’ macro: If a library
libGL.\{a,so\} (OpenGL) exists and exports the function glIsEnabled()

then ‘-lGL’ is added to the final VM link command. Otherwise the plugin is
disabled (and a message warning of the fact is printed).

Note: There’s a bug here. This should also check for ‘GL_VERSION\
_1_1’ in headers.

3.3.2 Customising the Makefile

The Mpeg3Plugin requires a (modified) libmpeg to be compiled along with it.
The sources for this library are in (several) subdirectories of Cross/Meg3Plugin
and they require additional cpp definitions in order to compile correctly.

To cope with the additional directories, unix/plugins/Mpeg3Plugin/mkmf.

subdirs simply lists them:

platforms/Cross/plugins/Mpeg3Plugin/libmpeg

platforms/Cross/plugins/Mpeg3Plugin/libmpeg/audio

platforms/Cross/plugins/Mpeg3Plugin/libmpeg/video

To cope with the additional cpp definitions, we could have written a tiny
Makefile.inc containing:

XDEFS = -DNOPTHREADS

Unfortunately the additional source directories contain various utility and test
programs (which must not be built) so we cannot rely on mkmf generating the
correct [targets] list.

Instead we just copy the default Makefile “template” (shown above) as Mpeg3Plugin/
Makefile.in and insert the required list of targets (and cpp definition) manu-
ally. The end result is shown in Figure 2.

Note: The default ‘[make_targets]’ will contain additional rules
for the objects that we’re trying to avoid building (because it’s built
from an exhaustive list of ‘.c’ files in the source directories). This
does no harm since the offending rules can never be triggered (their
targets are not listed in ‘OBJS’).

11

Makefile.in for Mpeg3Plugin in Unix Squeak

[make_cfg]

[make_plg]

TARGET = Mpeg3Plugin$a

PLUGIN = Mpeg3Plugin$o

VIDEO = getpicture$o headers$o idct$o macroblocks$o etc...

AUDIO = dct$o header$o layer1$o layer2$o layer3$o etc...

LIBMPEG = bitstream$o changesForSqueak$o libmpeg3$o etc...

OBJS = $(PLUGIN) $(VIDEO) $(AUDIO) $(LIBMPEG)

XINCLUDES = [includes]

XDEFS = -DNOPTHREADS

$(TARGET) : $(OBJS) Makefile

$(LINK) $(TARGET) $(OBJS)

[make_targets]

.force :

Figure 2: unix/plugins/Mpeg3Plugin/Makefile.in

3.4 Coping with VMMaker quirks

VMMaker will refuse to compile a plugin if it thinks the plugin requires plat-
form support. This is “all-or-nothing”: if platform support is required on one
platform then it is required on all platforms (even if the plugin compiles quite
happily without platform support in Unix).

The easiest way to add “null” platform support is to place an empty ‘Makefile.
inc’ in the plugin’s platdep directory. (To see this in action, look in unix/

plugins/JPEGReadWriter2Plugin.)

3.5 If all else fails

(Where “all else failing” is defined as: “after trying for 20 minutes and still
getting nowhere”.)

If you’re writing a plugin that needs platform support (beyond dumb inclusion
of a few additional ‘.c’ files) and this document has been of no help at all (or
if you understood it but you’re still suffering from “all else failing”) then send
me mail and I’ll be happy to help you with the various platdep files.

12

Index

[includes], 8
[make cfg], 8
[make inc], 9
[make plg], 8
[make targets], 9
[plibs], 9
[target], 9
[targets], 9
$(COMPILE), 9
$(LINK), 9
$(XCFLAGS), 9
$(XCPPFLAGS), 9
$(XDEFS), 9
$(XINCLUDES), 10
$(XLDFLAGS), 9

AC PLUGIN CHECK LIB, 6
AC PLUGIN DEFINE UNQUOTED, 7
acinclude.m4, 6

example, 11
additional plugin source directories, 10

build directory
configuring, 3
creating, 3

config.status, 5
versus configure, 5

configure, 6
macros for plugins, 6
recreating, 6

emergency services, 12

Makefile, 7
avoiding $(XINCLUDES), 10
compile/link commands, 9
keyword substitution, 7
passing extra flags, 9
replacing, 10
target rules, 9

Makefile keywords
[includes], 8
[make cfg], 8

[make inc], 9
[make plg], 8
[make targets], 9
[plibs], 9
[target], 9
[targets], 9

Makefile.in, 10
example, 11

Makefile.inc, 10
example, 11
keyword substitution, 10

mkmf, 7
additional source directories, 10
default header directories, 8
default source directories, 9

mkmf.subdirs, 10
example, 11

plugin
Makefile, 7
Makefile anatomy, 7
adding your own, 5
configuring, 6
target rules, 9
Unix-specific directory, 6

Unix-specific files, 6

VMMaker
configuration file, 4
missing platform support, 12
reference, 4

13

